
Qtile Documentation
Release 0.17.1.dev0+g6c4d055.d20210213

Aldo Cortesi

Feb 13, 2021

CONTENTS

1 Getting started 1

2 Advanced scripting 97

3 Getting involved 115

4 Miscellaneous 123

Index 125

i

ii

CHAPTER

ONE

GETTING STARTED

1.1 Installing Qtile

1.1.1 Distro Guides

Below are the preferred installation methods for specific distros. If you are running something else, please see In-
stalling From Source.

Installing on Arch Linux

Stable versions of Qtile are currently packaged for Arch Linux. To install this package, run:

pacman -S qtile

Please see the ArchWiki for more information on Qtile.

Installing on Fedora

Stable versions of Qtile are currently packaged for current versions of Fedora. To install this package, run:

dnf -y install qtile

Installing on Funtoo

Latest versions of Qtile are available on Funtoo. To install it, run:

emerge -av x11-wm/qtile

You can also install the development version from GitHub:

echo "x11-wm/qtile-9999 **" >> /etc/portage/package.accept_keywords
emerge -av qtile

1

https://wiki.archlinux.org/index.php/Qtile

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Customize

You can customize your installation with the following useflags:

• dbus

• widget-khal-calendar

• widget-imap

• widget-keyboardkbdd

• widget-launchbar

• widget-mpd

• widget-mpris

• widget-wlan

The dbus useflag is enabled by default. Disable it only if you know what it is and know you don’t use/need it.

All widget-* useflags are disabled by default because these widgets require additional dependencies while not everyone
will use them. Enable only widgets you need to avoid extra dependencies thanks to these useflags.

Visit Funtoo Qtile documentation for more details on Qtile installation on Funtoo.

Installing on Debian or Ubuntu

Note: As of Ubuntu 20.04 (Focal Fossa), the package has been outdated and removed from the Ubuntu’s official
package list. Users are advised to follow the instructions of Installing From Source.

On other recent Ubuntu (17.04 or greater) and Debian unstable versions, there are Qtile packages available via:

sudo apt-get install qtile

On older versions of Ubuntu (15.10 to 16.10) and Debian 9, the dependencies are available via:

sudo apt-get install python3-xcffib python3-cairocffi

Installing on Slackware

Qtile is available on the SlackBuilds.org as:

Package Name Description
qtile stable branch (release)

Using slpkg (third party package manager)

The easy way to install Qtile is with slpkg. For example:

slpkg -s sbo qtile

2 Chapter 1. Getting started

http://www.funtoo.org/Package:Qtile
https://slackbuilds.org/repository/14.2/desktop/qtile/
https://github.com/dslackw/slpkg

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Manual installation

Download dependencies first and install them. The order in which you need to install is:

• pycparser

• cffi

• futures

• python-xcffib

• trollius

• cairocffi

• qtile

Please see the HOWTO for more information on SlackBuild Usage HOWTO.

Installing on FreeBSD

Qtile is available via FreeBSD Ports. It can be installed with

pkg install qtile

1.1.2 Installing From Source

First, you need to install all of Qtile’s dependencies (although some are optional/not needed depending on your Python
version, as noted below).

All of Qtile’s supported versions of python can be found in the yml files Here. There are not many differences
between versions aside from python features you may or may not be able to use in your config. PyPy should be faster
at runtime than any corresponding CPython version under most circumstances, especially for bits of python code that
are run many times. CPython should start up faster than PyPy and has better compatibility for external libraries.

For more information on PyPY, see PyPy.

xcffib

Qtile uses xcffib as an XCB binding, which has its own instructions for building from source. However, if you’d
like to skip building it, you can install its dependencies, you will need libxcb and libffi with the associated headers
(libxcb-render0-dev and libffi-dev on Ubuntu), and install it via PyPI:

pip install xcffib

1.1. Installing Qtile 3

https://slackbuilds.org/howto/
https://www.freshports.org/x11-wm/qtile/
https://github.com/qtile/qtile/tree/master/.github/workflows
https://www.pypy.org/
https://github.com/tych0/xcffib#installation

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

cairocffi

Qtile uses cairocffi with XCB support via xcffib. You’ll need libcairo2, the underlying library used by the binding.
You should be sure before you install cairocffi that xcffib has been installed, otherwise the needed cairo-xcb
bindings will not be built. Once you’ve got the dependencies installed, you can use the latest version on PyPI:

pip install --no-cache-dir cairocffi

pangocairo

You’ll also need libpangocairo, which on Ubuntu can be installed via sudo apt-get install
libpangocairo-1.0-0. Qtile uses this to provide text rendering (and binds directly to it via cffi with a small
in-tree binding).

dbus/gobject

Until someone comes along and writes an asyncio-based dbus library, qtile will depend on python-dbus to interact
with dbus. This means that if you want to use things like notification daemon or mpris widgets, you’ll need to install
python-gobject and python-dbus. Qtile will run fine without these, although it will emit a warning that some things
won’t work.

Qtile

With the dependencies in place, you can now install qtile:

git clone git://github.com/qtile/qtile.git
cd qtile
pip install .

Stable versions of Qtile can be installed from PyPI:

pip install qtile

As long as the necessary libraries are in place, this can be done at any point, however, it is recommended that you first
install xcffib to ensure the cairo-xcb bindings are built (see above).

1.2 Configuration

Qtile is configured in Python. A script (~/.config/qtile/config.py by default) is evaluated, and a small set
of configuration variables are pulled from its global namespace.

4 Chapter 1. Getting started

https://pythonhosted.org/cairocffi/overview.html

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

1.2.1 Configuration lookup order

Qtile looks in the following places for a configuration file, in order:

• The location specified by the -c argument.

• $XDG_CONFIG_HOME/qtile/config.py, if it is set

• ~/.config/qtile/config.py

• It reads the module libqtile.resources.default_config, included by default with every Qtile in-
stallation.

Qtile will try to create the configuration file as a copy of the default config, if it doesn’t exist yet.

1.2.2 Default Configuration

The default configuration is invoked when qtile cannot find a configuration file. In addition, if qtile is restarted via
qshell, qtile will load the default configuration if the config file it finds has some kind of error in it. The documentation
below describes the configuration lookup process, as well as what the key bindings are in the default config.

The default config is not intended to be suitable for all users; it’s mostly just there so qtile does /something/ when fired
up, and so that it doesn’t crash and cause you to lose all your work if you reload a bad config.

Key Bindings

The mod key for the default config is mod4, which is typically bound to the “Super” keys, which are things like the
windows key and the mac command key. The basic operation is:

• mod + k or mod + j: switch windows on the current stack

• mod + <space>: put focus on the other pane of the stack (when in stack layout)

• mod + <tab>: switch layouts

• mod + w: close window

• mod + <ctrl> + r: restart qtile with new config

• mod + <group name>: switch to that group

• mod + <shift> + <group name>: send a window to that group

• mod + <enter>: start terminal guessed by libqtile.utils.guess_terminal

• mod + r: start a little prompt in the bar so users can run arbitrary commands

The default config defines one screen and 8 groups, one for each letter in asdfuiop. It has a basic bottom bar that
includes a group box, the current window name, a little text reminder that you’re using the default config, a system
tray, and a clock.

The default configuration has several more advanced key combinations, but the above should be enough for basic
usage of qtile.

See Keybindings in images for visual keybindings in keyboard layout.

1.2. Configuration 5

https://github.com/qtile/qtile/blob/master/libqtile/resources/default_config.py

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Mouse Bindings

By default, holding your mod key and clicking (and holding) a window will allow you to drag it around as a floating
window.

1.2.3 Configuration variables

A Qtile configuration consists of a file with a bunch of variables in it, which qtile imports and then runs as a python
file to derive its final configuration. The documentation below describes the most common configuration variables;
more advanced configuration can be found in the qtile-examples repository, which includes a number of real-world
configurations that demonstrate how you can tune Qtile to your liking. (Feel free to issue a pull request to add your
own configuration to the mix!)

Lazy objects

The lazy.lazy object is a special helper object to specify a command for later execution. This object acts like the
root of the object graph, which means that we can specify a key binding command with the same syntax used to call
the command through a script or through qtile shell.

Example

from libqtile.config import Key
from libqtile.command import lazy

keys = [
Key(

["mod1"], "k",
lazy.layout.down()

),
Key(

["mod1"], "j",
lazy.layout.up()

)
]

Lazy functions

This is overview of the commonly used functions for the key bindings. These functions can be called from commands
on the Qtile object or on another object in the command tree.

Some examples are given below.

6 Chapter 1. Getting started

https://github.com/qtile/qtile-examples

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

General functions

function description
lazy.
spawn("application")

Run the application

lazy.
spawncmd()

Open command prompt on the bar. See prompt widget.

lazy.
restart()

Restart Qtile and reload its config. It won’t close your windows

lazy.
shutdown()

Close the whole Qtile

Group functions

function description
lazy.
next_layout()

Use next layout on the actual group

lazy.
prev_layout()

Use previous layout on the actual group

lazy.screen.
next_group()

Move to the group on the right

lazy.screen.
prev_group()

Move to the group on the left

lazy.screen.
toggle_group()

Move to the last visited group

lazy.
group["group_name"].
toscreen()

Move to the group called group_name. Takes an optional toggle parameter (defaults
to True). If this group is already on the screen, then the group is toggled with last used

lazy.layout.
increase_ratio()

Increase the space for master window at the expense of slave windows

lazy.layout.
decrease_ratio()

Decrease the space for master window in the advantage of slave windows

Window functions

function description
lazy.window.
kill()

Close the focused window

lazy.layout.
next()

Switch window focus to other pane(s) of stack

lazy.window.
togroup("group_name")

Move focused window to the group called group_name

lazy.window.
toggle_floating()

Put the focused window to/from floating mode

lazy.window.
toggle_fullscreen()

Put the focused window to/from fullscreen mode

1.2. Configuration 7

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

ScratchPad DropDown functions

function description
lazy.
group["group_name"].
dropdown_toggle("name")

Toggles the visibility of the specified DropDown window. On first use, the configured
process is spawned.

Groups

A group is a container for a bunch of windows, analogous to workspaces in other window managers. Each client
window managed by the window manager belongs to exactly one group. The groups config file variable should be
initialized to a list of DGroup objects.

DGroup objects provide several options for group configuration. Groups can be configured to show and hide them-
selves when they’re not empty, spawn applications for them when they start, automatically acquire certain groups, and
various other options.

Example

from libqtile.config import Group, Match
groups = [

Group("a"),
Group("b"),
Group("c", matches=[Match(wm_class=["Firefox"])]),

]

allow mod3+1 through mod3+0 to bind to groups; if you bind your groups
by hand in your config, you don't need to do this.
from libqtile.dgroups import simple_key_binder
dgroups_key_binder = simple_key_binder("mod3")

Reference

Group

class libqtile.config.Group(name, matches=None, exclusive=False, spawn=None, layout=None,
layouts=None, persist=True, init=True, layout_opts=None,
screen_affinity=None, position=9223372036854775807, la-
bel=None)

Represents a “dynamic” group

These groups can spawn apps, only allow certain Matched windows to be on them, hide when they’re not in use,
etc. Groups are identified by their name.

Parameters

name [string] the name of this group

matches [default None] list of Match objects whose windows will be assigned to this group

exclusive [boolean] when other apps are started in this group, should we allow them here or
not?

8 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

spawn [string or list of strings] this will be exec() d when the group is created, you can pass
either a program name or a list of programs to exec()

layout [string] the name of default layout for this group (e.g. ‘max’ or ‘stack’). This is the name
specified for a particular layout in config.py or if not defined it defaults in general the class
name in all lower case.

layouts [list] the group layouts list overriding global layouts. Use this to define a separate list
of layouts for this particular group.

persist [boolean] should this group stay alive with no member windows?

init [boolean] is this group alive when qtile starts?

position [int] group position

label [string] the display name of the group. Use this to define a display name other than name
of the group. If set to None, the display name is set to the name.

libqtile.dgroups.simple_key_binder(mod, keynames=None)
Bind keys to mod+group position or to the keys specified as second argument

Group Matching

Match

class libqtile.config.Match(title=None, wm_class=None, role=None, wm_type=None,
wm_instance_class=None, net_wm_pid=None, func: Op-
tional[Callable[[libqtile.window.Window], bool]] = None)

Match for dynamic groups

It can match by title, wm_class, role, wm_type, wm_instance_class or net_wm_pid.

Match supports both regular expression objects (i.e. the result of re.compile()) or strings (match as an
“include”-match). If a window matches all specified values, it is considered a match.

Parameters

title: matches against the title (WM_NAME)

wm_class: matches against the second string in WM_CLASS atom

role: matches against the WM_ROLE atom

wm_type: matches against the WM_TYPE atom

wm_instance_class: matches against the first string in WM_CLASS atom

net_wm_pid: matches against the _NET_WM_PID atom (only int allowed for this rule)

func: delegate the match to the given function, which receives the tested client as argument and
must return True if it matches, False otherwise

1.2. Configuration 9

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Rule

class libqtile.config.Rule(match, group=None, float=False, intrusive=False,
break_on_match=True)

How to act on a match

A Rule contains a list of Match objects, and a specification about what to do when any of them is matched.

Parameters

match : Match object or a list of such associated with this Rule

float : auto float this window?

intrusive : override the group’s exclusive setting?

break_on_match : Should we stop applying rules if this rule is matched?

ScratchPad and DropDown

ScratchPad is a special - by default invisible - group which acts as a container for DropDown configurations. A
DropDown can be configured to spawn a defined process and bind thats process’ window to it. The associated window
can then be shown and hidden by the lazy command dropdown_toggle() (see Lazy objects) from the ScratchPad
group. Thus - for example - your favorite terminal emulator turns into a quake-like terminal by the control of qtile.

If the DropDown window turns visible it is placed as a floating window on top of the current group. If the DropDown
is hidden, it is simply switched back to the ScratchPad group.

Example

from libqtile.config import Group, ScratchPad, DropDown, Key
from libqtile.command import lazy
groups = [

ScratchPad("scratchpad", [
define a drop down terminal.
it is placed in the upper third of screen by default.
DropDown("term", "urxvt", opacity=0.8),

define another terminal exclusively for qshell at different position
DropDown("qshell", "urxvt -hold -e qshell",

x=0.05, y=0.4, width=0.9, height=0.6, opacity=0.9,
on_focus_lost_hide=True)]),

Group("a"),
]

keys = [
toggle visibiliy of above defined DropDown named "term"
Key([], 'F11', lazy.group['scratchpad'].dropdown_toggle('term')),
Key([], 'F12', lazy.group['scratchpad'].dropdown_toggle('qshell')),

]

There is only one DropDown visible in current group at a time. If a further DropDown is set visible the currently
shown DropDown turns invisble immediately.

Note that if the window is set to not floating, it is detached from DropDown and ScratchPad, and a new pocess is
spawned next time the DropDown is set visible.

10 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Reference

ScratchPad

class libqtile.config.ScratchPad(name, dropdowns=None, position=9223372036854775807,
label='')

Represents a “ScratchPad” group

ScratchPad adds a (by default) invisible group to qtile. That group is used as a place for currently not visible
windows spawned by a DropDown configuration.

Parameters

name [string] the name of this group

dropdowns [default None] list of DropDown objects

position [int] group position

label [string] The display name of the ScratchPad group. Defaults to the empty string such that
the group is hidden in GroupList widget.

DropDown

class libqtile.config.DropDown(name, cmd, **config)
Configure a specified command and its associated window for the ScratchPad. That window can be shown and
hidden using a configurable keystroke or any other scripted trigger.

key default description
height 0.35 ‘Height of window as fraction of current screen.’
on_focus_lost_hideTrue ‘Shall the window be hidden if focus is lost? If so, the Drop-

Down is hidden if window focus or the group is changed.’
opacity 0.9 ‘Opacity of window as fraction. Zero is opaque.’
warp_pointer True ‘Shall pointer warp to center of window on activation? This

has only effect if any of the on_focus_lost_xxx configurations
is True’

width 0.8 ‘Width of window as fraction of current screen width’
x 0.1 ‘X position of window as fraction of current screen width. 0 is

the left most position.’
y 0.0 ‘Y position of window as fraction of current screen height. 0 is

the top most position. To show the window at bottom, you have
to configure a value < 1 and an appropriate height.’

Keys

The keys variable defines Qtile’s key bindings. Individual key bindings are defined with libqtile.config.Key
as demonstrated in the following example. Note that you may specify more than one callback functions.

from libqtile.config import Key

keys = [
Pressing "Meta + Shift + a".
Key(["mod4", "shift"], "a", callback, ...),

(continues on next page)

1.2. Configuration 11

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

Pressing "Control + p".
Key(["control"], "p", callback, ...),

Pressing "Meta + Tab".
Key(["mod4", "mod1"], "Tab", callback, ...),

]

The above may also be written more concisely with the help of the libqtile.config.EzKey helper class. The
following example is functionally equivalent to the above:

from libqtile.config import EzKey as Key

keys = [
Key("M-S-a", callback, ...),
Key("C-p", callback, ...),
Key("M-A-<Tab>", callback, ...),

]

The EzKey modifier keys (i.e. MASC) can be overwritten through the EzKey.modifier_keys dictionary. The
defaults are:

modifier_keys = {
'M': 'mod4',
'A': 'mod1',
'S': 'shift',
'C': 'control',

}

KeyChords

Qtile also allows sequences of keys to trigger callbacks. In Qtile, these sequences are known as chords and are defined
with libqtile.config.KeyChord. Chords are added to the keys section of the config file.

from libqtile.config import Key, KeyChord

keys = [
KeyChord([mod], "z", [

Key([], "x", lazy.spawn("xterm"))
])

]

The above code will launch xterm when the user presses Mod + z, followed by x.

Warning: Users should note that key chords are aborted by pressing <escape>. In the above example, if the user
presses Mod + z, any following key presses will still be sent to the currently focussed window. If <escape> has not
been pressed, the next press of x will launch xterm.

12 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Modes

Chords can optionally specify a “mode”. When this is done, the mode will remain active until the user presses
<escape>. This can be useful for configuring a subset of commands for a particular situations (i.e. similar to vim
modes).

from libqtile.config import Key, KeyChord

keys = [
KeyChord([mod], "z", [

Key([], "g", lazy.layout.grow()),
Key([], "s", lazy.layout.shrink()),
Key([], "n", lazy.layout.normalize()),
Key([], "m", lazy.layout.maximize())],
mode="Windows"

)
]

In the above example, pressing Mod + z triggers the “Windows” mode. Users can then resize windows by just pressing
g (to grow the window), s to shrink it etc. as many times as needed. To exit the mode, press <escape>.

Note: If using modes, users may also wish to use the Chord widget (libqtile.widget.chord.Chord) as this
will display the name of the currently active mode on the bar.

Chains

Chords can also be chained to make even longer sequences.

from libqtile.config import Key, KeyChord

keys = [
KeyChord([mod], "z", [

KeyChord([], "x", [
Key([], "c", lazy.spawn("xterm"))

])
])

]

Modes can also be added to chains if required.

Modifiers

On most systems mod1 is the Alt key - you can see which modifiers, which are enclosed in a list, map to which keys
on your system by running the xmodmap command. This example binds Alt-k to the “down” command on the
current layout. This command is standard on all the included layouts, and switches to the next window (where “next”
is defined differently in different layouts). The matching “up” command switches to the previous window.

Modifiers include: “shift”, “lock”, “control”, “mod1”, “mod2”, “mod3”, “mod4”, and “mod5”. They can be used in
combination by appending more than one modifier to the list:

Key(
["mod1", "control"], "k",

(continues on next page)

1.2. Configuration 13

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

lazy.layout.shuffle_down()
)

Special keys

These are most commonly used special keys. For complete list please see the code. You can create bindings on them
just like for the regular keys. For example Key(["mod1"], "F4", lazy.window.kill()).

Return
BackSpace
Tab
space
Home, End
Left, Up, Right, Down
F1, F2, F3, . . .

XF86AudioRaiseVolume
XF86AudioLowerVolume
XF86AudioMute
XF86AudioNext
XF86AudioPrev
XF86MonBrightnessUp
XF86MonBrightnessDown

Reference

Key

class libqtile.config.Key(modifiers: List[str], key: str, *commands, desc: str = '')
Defines a keybinding.

Parameters

modifiers: A list of modifier specifications. Modifier specifications are one of: “shift”, “lock”,
“control”, “mod1”, “mod2”, “mod3”, “mod4”, “mod5”.

key: A key specification, e.g. “a”, “Tab”, “Return”, “space”.

commands: A list of lazy command objects generated with the lazy.lazy helper. If multiple
Call objects are specified, they are run in sequence.

desc: description to be added to the key binding

14 Chapter 1. Getting started

https://github.com/qtile/qtile/blob/master/libqtile/xkeysyms.py

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

KeyChord

class libqtile.config.KeyChord(modifiers: List[str], key: str, submapings:
List[libqtile.config.Key], mode: str = '')

Define a key chord aka vim like mode

Parameters

modifiers: A list of modifier specifications. Modifier specifications are one of: “shift”, “lock”,
“control”, “mod1”, “mod2”, “mod3”, “mod4”, “mod5”.

key: A key specification, e.g. “a”, “Tab”, “Return”, “space”.

submappings: A list of Key declarations to bind in this chord

mode: A string with vim like mode name if it’s set chord not end after use one of submapings
or Esc key

EzConfig

class libqtile.config.EzConfig
Helper class for defining key and button bindings in an emacs-like format. Inspired by Xmonad’s
XMonad.Util.EZConfig.

Layouts

A layout is an algorithm for laying out windows in a group on your screen. Since Qtile is a tiling window manager,
this usually means that we try to use space as efficiently as possible, and give the user ample commands that can be
bound to keys to interact with layouts.

The layouts variable defines the list of layouts you will use with Qtile. The first layout in the list is the default. If
you define more than one layout, you will probably also want to define key bindings to let you switch to the next and
previous layouts.

See Built-in Layouts for a listing of available layouts.

Example

from libqtile import layout
layouts = [

layout.Max(),
layout.Stack(stacks=2)

]

1.2. Configuration 15

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Mouse

The mouse config file variable defines a set of global mouse actions, and is a list of Click and Drag objects, which
define what to do when a window is clicked or dragged.

Example

from libqtile.config import Click, Drag
mouse = [

Drag([mod], "Button1", lazy.window.set_position_floating(),
start=lazy.window.get_position()),

Drag([mod], "Button3", lazy.window.set_size_floating(),
start=lazy.window.get_size()),

Click([mod], "Button2", lazy.window.bring_to_front())
]

The above example can also be written more concisely with the help of the EzClick and EzDrag helpers:

from libqtile.config import EzClick as Click, EzDrag as Drag

mouse = [
Drag("M-1", lazy.window.set_position_floating(),

start=lazy.window.get_position()),
Drag("M-3", lazy.window.set_size_floating(),

start=lazy.window.get_size()),
Click("M-2", lazy.window.bring_to_front())

]

Reference

Click

class libqtile.config.Click(modifiers: List[str], button: str, *commands, **kwargs)
Defines binding of a mouse click

It focuses clicked window by default. If you want to prevent it, pass focus=None as an argument

Drag

class libqtile.config.Drag(*args, start=False, **kwargs)
Defines binding of a mouse to some dragging action

On each motion event command is executed with two extra parameters added x and y offset from previous move

It focuses clicked window by default. If you want to prevent it pass, focus=None as an argument

16 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Screens

The screens configuration variable is where the physical screens, their associated bars, and the widgets con-
tained within the bars are defined.

See Built-in Widgets for a listing of available widgets.

Example

Tying together screens, bars and widgets, we get something like this:

from libqtile.config import Screen
from libqtile import bar, widget

screens = [
Screen(

bottom=bar.Bar([
widget.GroupBox(),
widget.WindowName()
], 30),

),
Screen(

bottom=bar.Bar([
widget.GroupBox(),
widget.WindowName()
], 30),

)
]

Bars support both solid background colors and gradients by supplying a list of colors that make up a linear gradi-
ent. For example, bar.Bar(..., background="#000000") will give you a black back ground (the default),
while bar.Bar(..., background=["#000000", "#FFFFFF"]) will give you a background that fades
from black to white.

Fake Screens

instead of using the variable screens the variable fake_screens can be used to set split a physical monitor into multiple
screens. They can be used like this:

from libqtile.config import Screen
from libqtile import bar, widget

screens look like this
600 300
|-------------|-----|
| 480| |580
| A | B |
|----------|--| |
| 400|--|-----|
| C | |400
|----------| D |
500 |--------|
400
#
Notice there is a hole in the middle

(continues on next page)

1.2. Configuration 17

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

also D goes down below the others

fake_screens = [
Screen(

bottom=bar.Bar(
[

widget.Prompt(),
widget.Sep(),
widget.WindowName(),
widget.Sep(),
widget.Systray(),
widget.Sep(),
widget.Clock(format='%H:%M:%S %d.%m.%Y')

],
24,
background="#555555"

),
x=0,
y=0,
width=600,
height=480

),
Screen(

top=bar.Bar(
[

widget.GroupBox(),
widget.WindowName(),
widget.Clock()

],
30,

),
x=600,
y=0,
width=300,
height=580

),
Screen(

top=bar.Bar(
[

widget.GroupBox(),
widget.WindowName(),
widget.Clock()

],
30,

),
x=0,
y=480,
width=500,
height=400

),
Screen(

top=bar.Bar(
[

widget.GroupBox(),
widget.WindowName(),
widget.Clock()

],
(continues on next page)

18 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

30,
),
x=500,
y=580,
width=400,
height=400

),
]

Third-party bars

There might be some reasons to use third-party bars. For instance you can come from another window manager and
you have already configured dzen2, xmobar, or something else. They definitely can be used with Qtile too. In fact,
any additional configurations aren’t needed. Just run the bar and qtile will adapt.

Reference

Screen

class libqtile.config.Screen(top: Optional[Union[libqtile.bar.Bar, libqtile.bar.Gap]] = None,
bottom: Optional[Union[libqtile.bar.Bar, libqtile.bar.Gap]] =
None, left: Optional[Union[libqtile.bar.Bar, libqtile.bar.Gap]] =
None, right: Optional[Union[libqtile.bar.Bar, libqtile.bar.Gap]] =
None, wallpaper: Optional[str] = None, wallpaper_mode: Op-
tional[str] = None, x: Optional[int] = None, y: Optional[int] =
None, width: Optional[int] = None, height: Optional[int] = None)

A physical screen, and its associated paraphernalia.

Define a screen with a given set of Bars of a specific geometry. Note that bar.Bar objects can only be placed at
the top or the bottom of the screen (bar.Gap objects can be placed anywhere). Also, x, y, width, and height
aren’t specified usually unless you are using ‘fake screens’.

The wallpaper parameter, if given, should be a path to an image file. How this image is painted to the screen
is specified by the wallpaper_mode parameter. By default, the image will be placed at the screens origin
and retain its own dimensions. If the mode is ‘fill’, the image will be centred on the screen and resized to fill it.
If the mode is ‘stretch’, the image is stretched to fit all of it into the screen.

Bar

class libqtile.bar.Bar(widgets, size, **config)
A bar, which can contain widgets

Parameters

widgets : A list of widget objects.

size : The “thickness” of the bar, i.e. the height of a horizontal bar, or the width of a vertical
bar.

1.2. Configuration 19

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background '#000000' ‘Background colour.’
margin 0 ‘Space around bar as int or list of ints [N E S W].’
opacity 1 ‘Bar window opacity.’

Gap

class libqtile.bar.Gap(size)
A gap placed along one of the edges of the screen

If a gap has been defined, Qtile will avoid covering it with windows. The most probable reason for configuring
a gap is to make space for a third-party bar or other static window.

Parameters

size : The “thickness” of the gap, i.e. the height of a horizontal gap, or the width of a vertical
gap.

Hooks

Qtile provides a mechanism for subscribing to certain events in libqtile.hook. To subscribe to a hook in your
configuration, simply decorate a function with the hook you wish to subscribe to.

See Built-in Hooks for a listing of available hooks.

Examples

Automatic floating dialogs

Let’s say we wanted to automatically float all dialog windows (this code is not actually necessary; Qtile floats all
dialogs by default). We would subscribe to the client_new hook to tell us when a new window has opened and, if
the type is “dialog”, as can set the window to float. In our configuration file it would look something like this:

from libqtile import hook

@hook.subscribe.client_new
def floating_dialogs(window):

dialog = window.window.get_wm_type() == 'dialog'
transient = window.window.get_wm_transient_for()
if dialog or transient:

window.floating = True

A list of available hooks can be found in the Built-in Hooks reference.

20 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Autostart

If you want to run commands or spawn some applications when Qtile starts, you’ll want to look at the startup and
startup_once hooks. startup is emitted every time Qtile starts (including restarts), whereas startup_once
is only emitted on the very first startup.

Let’s create a file ~/.config/qtile/autostart.sh that will set our desktop wallpaper and start a few pro-
grams when Qtile first runs.

#!/bin/sh
feh --bg-scale ~/images/wallpaper.jpg &
pidgin &
dropbox start &

We can then subscribe to startup_once to run this script:

import os
import subprocess

@hook.subscribe.startup_once
def autostart():

home = os.path.expanduser('~/.config/qtile/autostart.sh')
subprocess.call([home])

Accessing the qtile object

If you want to do something with the Qtile manager instance inside a hook, it can be imported into your config:

from libqtile import qtile

In addition to the above variables, there are several other boolean configuration variables that control specific aspects
of Qtile’s behavior:

1.2. Configuration 21

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

variable default description
auto_fullscreenTrue If a window requests to be fullscreen, it is automatically fullscreened. Set this to false if

you only want windows to be fullscreen if you ask them to be.
bring_front_clickFalse When clicked, should the window be brought to the front or not. If this is set to “float-

ing_only”, only floating windows will get affected (This sets the X Stack Mode to Above.)
cursor_warpFalse If true, the cursor follows the focus as directed by the keyboard, warping to the center of

the focused window. When switching focus between screens, If there are no windows in
the screen, the cursor will warp to the center of the screen.

dgroups_key_binderNone A function which generates group binding hotkeys. It takes a single argument, the DGroups
object, and can use that to set up dynamic key bindings.
A sample implementation is available in libqtile/dgroups.py called simple_key_binder(),
which will bind groups to mod+shift+0-10 by default.

dgroups_app_rules[] A list of Rule objects which can send windows to various groups based on matching criteria.
extension_defaultssame

as wid-
get_defaults

Default settings for extensions.

floating_layoutlayout.Floating(float_rules=[. . .])The default floating layout to use. This allows you to set custom floating rules among other
things if you wish.
See the configuration file for the default float_rules.

focus_on_window_activationsmart Behavior of the _NET_ACTIVATE_WINDOW message sent by applications
• urgent: urgent flag is set for the window
• focus: automatically focus the window
• smart: automatically focus if the window is in the current group
• never: never automatically focus any window that requests it

follow_mouse_focusTrue Controls whether or not focus follows the mouse around as it moves across windows in a
layout.

widget_defaults
dict(font=’sans’,

fontsize=12,
padding=3)

Default settings for bar widgets.

wmname “LG3D” Gasp! We’re lying here. In fact, nobody really uses or cares about this string besides java
UI toolkits; you can see several discussions on the mailing lists, GitHub issues, and other
WM documentation that suggest setting this string if your java app doesn’t work correctly.
We may as well just lie and say that we’re a working one by default. We choose LG3D to
maximize irony: it is a 3D non-reparenting WM written in java that happens to be on java’s
whitelist.

1.2.4 Testing your configuration

The best way to test changes to your configuration is with the provided Xephyr script. This will run Qtile with your
config.py inside a nested X server and prevent your running instance of Qtile from crashing if something goes
wrong.

See Hacking Qtile for more information on using Xephyr.

22 Chapter 1. Getting started

https://github.com/qtile/qtile/blob/master/libqtile/dgroups.py

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

1.2.5 Starting Qtile

There are several ways to start Qtile. The most common way is via an entry in your X session manager’s menu. The
default Qtile behavior can be invoked by creating a qtile.desktop file in /usr/share/xsessions.

A second way to start Qtile is a custom X session. This way allows you to invoke Qtile with custom arguments,
and also allows you to do any setup you want (e.g. special keyboard bindings like mapping caps lock to control,
setting your desktop background, etc.) before Qtile starts. If you’re using an X session manager, you still may
need to create a custom.desktop file similar to the qtile.desktop file above, but with Exec=/etc/X11/
xsession. Then, create your own ~/.xsession. There are several examples of user defined xsession s in the
qtile-examples repository.

If there is no display manager such as SDDM, LightDM or other and there is need to start Qtile directly from ~/.
xinitrc do that by adding exec qtile at the end.

In very special cases, ex. Qtile crashing during session, then suggestion would be to start through a loop to save
running applications:

while true; do
qtile

done

Finally, if you’re a gnome user, you can start integrate Qtile into Gnome’s session manager and use gnome as usual.

Running from systemd

This case will cover automatic login to Qtile after booting the system without using display manager. It logins in
virtual console and init X by running through session.

Automatic login to virtual console

To get login into virtual console as an example edit getty service by running systemctl edit getty@tty1 and add instruc-
tions to /etc/systemd/system/getty@tty1.service.d/override.conf :

[Service]
ExecStart=
ExecStart=-/usr/bin/agetty --autologin username --noclear %I $TERM

username should be changed to current user name.

Check more for other examples.

Autostart X session

After login X session should be started. That can be done by .bash_profile if bash is used or .zprofile in case of zsh.
Other shells can be adjusted by given examples.

if systemctl -q is-active graphical.target && [[! $DISPLAY && $XDG_VTNR -eq 1]];
→˓then
exec startx

fi

And to start Qtile itself .xinitrc should be fixed:

1.2. Configuration 23

https://github.com/qtile/qtile/blob/master/resources/qtile.desktop
https://github.com/qtile/qtile-examples
https://wiki.archlinux.org/index.php/Getty#Automatic_login_to_virtual_console

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

some apps that should be started before Qtile, ex.
#
[[-f ~/.Xresources]] && xrdb -merge ~/.Xresources
~/.fehbg &
nm-applet &
blueman-applet &
dunst &
#
or
#
source ~/.xsession

exec qtile

Running Inside Gnome

Add the following snippet to your Qtile configuration. As per this page, it registers Qtile with gnome-session. Without
it, a “Something has gone wrong!” message shows up a short while after logging in. dbus-send must be on your
$PATH.

import subprocess
import os
from libqtile import hook

@hook.subscribe.startup
def dbus_register():

id = os.environ.get('DESKTOP_AUTOSTART_ID')
if not id:

return
subprocess.Popen(['dbus-send',

'--session',
'--print-reply',
'--dest=org.gnome.SessionManager',
'/org/gnome/SessionManager',
'org.gnome.SessionManager.RegisterClient',
'string:qtile',
'string:' + id])

This adds a new entry “Qtile GNOME” to GDM’s login screen.

$ cat /usr/share/xsessions/qtile_gnome.desktop
[Desktop Entry]
Name=Qtile GNOME
Comment=Tiling window manager
TryExec=/usr/bin/gnome-session
Exec=gnome-session --session=qtile
Type=XSession

The custom session for gnome-session.

For Gnome >= 3.23.2 (Ubuntu >= 17.04, Fedora >= 26, etc.)

$ cat /usr/share/gnome-session/sessions/qtile.session
[GNOME Session]
Name=Qtile session
RequiredComponents=qtile;org.gnome.SettingsDaemon.A11ySettings;org.gnome.
→˓SettingsDaemon.Clipboard;org.gnome.SettingsDaemon.Color;org.gnome.SettingsDaemon.
→˓Datetime;org.gnome.SettingsDaemon.Housekeeping;org.gnome.SettingsDaemon.Keyboard;
→˓org.gnome.SettingsDaemon.MediaKeys;org.gnome.SettingsDaemon.Mouse;org.gnome.
→˓SettingsDaemon.Power;org.gnome.SettingsDaemon.PrintNotifications;org.gnome.
→˓SettingsDaemon.Rfkill;org.gnome.SettingsDaemon.ScreensaverProxy;org.gnome.
→˓SettingsDaemon.Sharing;org.gnome.SettingsDaemon.Smartcard;org.gnome.SettingsDaemon.
→˓Sound;org.gnome.SettingsDaemon.Wacom;org.gnome.SettingsDaemon.XSettings;

(continues on next page)

24 Chapter 1. Getting started

https://wiki.gnome.org/Projects/SessionManagement/GnomeSession#A3._Register

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

Or for older Gnome versions

$ cat /usr/share/gnome-session/sessions/qtile.session
[GNOME Session]
Name=Qtile session
RequiredComponents=qtile;gnome-settings-daemon;

So that Qtile starts automatically on login.

$ cat /usr/share/applications/qtile.desktop
[Desktop Entry]
Type=Application
Encoding=UTF-8
Name=Qtile
Exec=qtile
NoDisplay=true
X-GNOME-WMName=Qtile
X-GNOME-Autostart-Phase=WindowManager
X-GNOME-Provides=windowmanager
X-GNOME-Autostart-Notify=false

The above does not start gnome-panel. Getting gnome-panel to work requires some extra Qtile configuration, mainly
making the top and bottom panels static on panel startup and leaving a gap at the top (and bottom) for the panel
window.

You might want to add keybindings to log out of the GNOME session.

Key([mod, 'control'], 'l', lazy.spawn('gnome-screensaver-command -l')),
Key([mod, 'control'], 'q', lazy.spawn('gnome-session-quit --logout --no-prompt')),
Key([mod, 'shift', 'control'], 'q', lazy.spawn('gnome-session-quit --power-off')),

The above apps need to be in your path (though they are typically installed in /usr/bin, so they probably are if
they’re installed at all).

1.3 Troubleshooting

1.3.1 So something has gone wrong. . . what do you do?

When Qtile is running, it logs error messages (and other messages) to its log file. This is found at ~/.local/
share/qtile/qtile.log. This is the first place to check to see what is going on. If you are getting unexpected
errors from normal usage or your configuration (and you’re not doing something wacky) and believe you have found
a bug, then please report a bug.

If you are hacking on Qtile and you want to debug your changes, this log is your best friend. You can send messages
to the log from within libqtile by using the logger:

from libqtile.log_utils import logger

logger.warning("Your message here")
logger.warning(variable_you_want_to_print)

try:
(continues on next page)

1.3. Troubleshooting 25

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

some changes here that might error
raise Exception as e:

logger.exception(e)

logger.warning is convenient because its messages will always be visibile in the log. logger.exception is
helpful because it will print the full traceback of an error to the log. By sticking these amongst your changes you can
look more closely at the effects of any changes you made to Qtile’s internals.

1.3.2 Capturing an xtrace

Occasionally, a bug will be low level enough to require an xtrace of Qtile’s conversations with the X server. To
capture one of these, create an xinitrc or similar file with:

exec xtrace qtile >> ~/qtile.log

This will put the xtrace output in Qtile’s logfile as well. You can then demonstrate the bug, and paste the contents of
this file into the bug report.

Note that xtrace may be named x11trace on some platforms, for example, on Fedora.

1.4 Shell commands

qtile uses a subcommand structure; various subcommands are listed below. Additionally, two other commands avail-
able in the scripts/ section of the repository are also documented below.

1.4.1 qtile start

This is the entry point for the window manager, and what you should run from your .xsession or similar. This will
make an attempt to detect if qtile is already running and fail if it is. See qtile start --help for more details.

1.4.2 qtile shell

The Qtile command shell is a command-line shell interface that provides access to the full complement of Qtile
command functions. The shell features command name completion, and full command documentation can be accessed
from the shell itself. The shell uses GNU Readline when it’s available, so the interface can be configured to, for
example, obey VI keybindings with an appropriate .inputrc file. See the GNU Readline documentation for more
information.

Navigating the Object Graph

The shell presents a filesystem-like interface to the object graph - the builtin “cd” and “ls” commands act like their
familiar shell counterparts:

> ls
layout/ widget/ screen/ bar/ window/ group/

> cd bar

bar> ls

(continues on next page)

26 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

bottom/

bar> cd bottom

bar['bottom']> ls
screen/

bar['bottom']> cd ../..

> ls
layout/ widget/ screen/ bar/ window/ group/

Note that the shell provides a “short-hand” for specifying node keys (as opposed to children). The following is a valid
shell path:

> cd group/4/window/31457314

The command prompt will, however, always display the Python node path that should be used in scripts and key
bindings:

group['4'].window[31457314]>

Live Documentation

The shell help command provides the canonical documentation for the Qtile API:

> cd layout/1

layout[1]> help
help command -- Help for a specific command.

Builtins
========
cd exit help ls q quit

Commands for this object
========================
add commands current delete doc
down get_info items next previous
rotate shuffle_down shuffle_up toggle_split up

layout[1]> help previous
previous()
Focus previous stack.

1.4. Shell commands 27

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

1.4.3 qtile cmd-obj

This is a simple tool to expose qtile.command functionality to shell. This can be used standalone or in other shell
scripts.

Examples:

Output of qtile cmd-obj -h

usage: qtile cmd-obj [-h] [--object OBJ_SPEC [OBJ_SPEC ...]]
[--function FUNCTION] [--args ARGS [ARGS ...]] [--info]

Simple tool to expose qtile.command functionality to shell.

optional arguments:
-h, --help show this help message and exit
--object OBJ_SPEC [OBJ_SPEC ...], -o OBJ_SPEC [OBJ_SPEC ...]

Specify path to object (space separated). If no
--function flag display available commands.

--function FUNCTION, -f FUNCTION
Select function to execute.

--args ARGS [ARGS ...], -a ARGS [ARGS ...]
Set arguments supplied to function.

--info, -i With both --object and --function args prints
documentation for function.

Examples:
qtile cmd-obj
qtile cmd-obj -o cmd
qtile cmd-obj -o cmd -f prev_layout -i
qtile cmd-obj -o cmd -f prev_layout -a 3 # prev_layout on group 3
qtile cmd-obj -o group 3 -f focus_back

Output of qtile cmd-obj -o group 3

-o group 3 -f commands Returns a list of possible commands for this object
-o group 3 -f doc * Returns the documentation for a specified command
→˓name
-o group 3 -f eval * Evaluates code in the same context as this function
-o group 3 -f focus_back Focus the window that had focus before the current
→˓one got it.
-o group 3 -f focus_by_name * Focus the first window with the given name. Do
→˓nothing if the name is
-o group 3 -f function * Call a function with current object as argument
-o group 3 -f info Returns a dictionary of info for this group
-o group 3 -f info_by_name * Get the info for the first window with the given
→˓name without giving it
-o group 3 -f items * Returns a list of contained items for the specified
→˓name
-o group 3 -f next_window Focus the next window in group.
-o group 3 -f prev_window Focus the previous window in group.
-o group 3 -f set_label * Set the display name of current group to be used in
→˓GroupBox widget.
-o group 3 -f setlayout

(continues on next page)

28 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

-o group 3 -f switch_groups * Switch position of current group with name
-o group 3 -f toscreen * Pull a group to a specified screen.
-o group 3 -f unminimize_all Unminimise all windows in this group

Output of qtile cmd-obj -o cmd

-o cmd -f add_rule * Add a dgroup rule, returns rule_id needed to remove
→˓it
-o cmd -f addgroup * Add a group with the given name
-o cmd -f commands Returns a list of possible commands for this object
-o cmd -f critical Set log level to CRITICAL
-o cmd -f debug Set log level to DEBUG
-o cmd -f delgroup * Delete a group with the given name
-o cmd -f display_kb * Display table of key bindings
-o cmd -f doc * Returns the documentation for a specified command
→˓name
-o cmd -f error Set log level to ERROR
-o cmd -f eval * Evaluates code in the same context as this function
-o cmd -f findwindow * Launch prompt widget to find a window of the given
→˓name
-o cmd -f focus_by_click * Bring a window to the front
-o cmd -f function * Call a function with current object as argument
-o cmd -f get_info Prints info for all groups
-o cmd -f get_state Get pickled state for restarting qtile
-o cmd -f get_test_data Returns any content arbitrarily set in the self.
→˓test_data attribute.
-o cmd -f groups Return a dictionary containing information for all
→˓groups
-o cmd -f hide_show_bar * Toggle visibility of a given bar
-o cmd -f info Set log level to INFO
-o cmd -f internal_windows Return info for each internal window (bars, for
→˓example)
-o cmd -f items * Returns a list of contained items for the specified
→˓name
-o cmd -f list_widgets List of all addressible widget names
-o cmd -f next_layout * Switch to the next layout.
-o cmd -f next_screen Move to next screen
-o cmd -f next_urgent Focus next window with urgent hint
-o cmd -f pause Drops into pdb
-o cmd -f prev_layout * Switch to the previous layout.
-o cmd -f prev_screen Move to the previous screen
-o cmd -f qtile_info Returns a dictionary of info on the Qtile instance
-o cmd -f qtilecmd * Execute a Qtile command using the client syntax
-o cmd -f remove_rule * Remove a dgroup rule by rule_id
-o cmd -f restart Restart qtile
-o cmd -f run_extension * Run extensions
-o cmd -f run_extention * Deprecated alias for cmd_run_extension()
-o cmd -f run_external * Run external Python script
-o cmd -f screens Return a list of dictionaries providing information
→˓on all screens
-o cmd -f shutdown Quit Qtile
-o cmd -f simulate_keypress * Simulates a keypress on the focused window.
-o cmd -f spawn * Run cmd in a shell.
-o cmd -f spawncmd * Spawn a command using a prompt widget, with tab-
→˓completion.

(continues on next page)

1.4. Shell commands 29

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

-o cmd -f status Return "OK" if Qtile is running
-o cmd -f switch_groups * Switch position of groupa to groupb
-o cmd -f switchgroup * Launch prompt widget to switch to a given group to
→˓the current screen
-o cmd -f sync Sync the X display. Should only be used for
→˓development
-o cmd -f to_layout_index * Switch to the layout with the given index in self.
→˓layouts.
-o cmd -f to_screen * Warp focus to screen n, where n is a 0-based screen
→˓number
-o cmd -f togroup * Launch prompt widget to move current window to a
→˓given group
-o cmd -f tracemalloc_dump Dump tracemalloc snapshot
-o cmd -f tracemalloc_toggle Toggle tracemalloc status
-o cmd -f warning Set log level to WARNING
-o cmd -f windows Return info for each client window

1.4.4 qtile-run

Run a command applying rules to the new windows, ie, you can start a window in a specific group, make it floating,
intrusive, etc.

The Windows must have NET_WM_PID.

run xterm floating on group "test-group"
qtile run-cmd -g test-group -f xterm

1.4.5 qtile-top

Is a top like to measure memory usage of Qtile’s internals.

1.4.6 dqtile-cmd

A Rofi/dmenu interface to qtile-cmd. Accepts all arguments of qtile-cmd.

30 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Examples:

Output of dqtile-cmd -o cmd

Output of dqtile-cmd -h

dqtile-cmd

A Rofi/dmenu interface to qtile-cmd. Excepts all arguments of qtile-cmd
(see below).

usage: dqtile-cmd [-h] [--object OBJ_SPEC [OBJ_SPEC ...]]
[--function FUNCTION] [--args ARGS [ARGS ...]] [--info]

Simple tool to expose qtile.command functionality to shell.

optional arguments:
-h, --help show this help message and exit
--object OBJ_SPEC [OBJ_SPEC ...], -o OBJ_SPEC [OBJ_SPEC ...]

Specify path to object (space separated). If no
--function flag display available commands.

--function FUNCTION, -f FUNCTION
Select function to execute.

--args ARGS [ARGS ...], -a ARGS [ARGS ...]
Set arguments supplied to function.

--info, -i With both --object and --function args prints
documentation for function.

Examples:
dqtile-cmd
dqtile-cmd -o cmd
dqtile-cmd -o cmd -f prev_layout -i
dqtile-cmd -o cmd -f prev_layout -a 3 # prev_layout on group 3
dqtile-cmd -o group 3 -f focus_back

(continues on next page)

1.4. Shell commands 31

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

If both rofi and dmenu are present rofi will be selected as default, to change this
→˓us --force-dmenu as the first argument.

1.4.7 iqshell

In addition to the standard qtile shell shell interface, we provide a kernel capable of running through Jupyter
that hooks into the qshell client. The command structure and syntax is the same as qshell, so it is recommended you
read that for more information about that.

Dependencies

In order to run iqshell, you must have ipykernel and jupyter_console. You can install the dependencies when you are
installing qtile by running:

$ pip install qtile[ipython]

Otherwise, you can just install these two packages separately, either through PyPI or through your distribution package
manager.

Installing and Running the Kernel

Once you have the required dependencies, you can run the kernel right away by running:

$ python3 -m libqtile.interactive.iqshell_kernel

However, this will merely spawn a kernel instance, you will have to run a separate frontend that connects to this kernel.

A more convenient way to run the kernel is by registering the kernel with Jupyter. To register the kernel itself, run:

$ python3 -m libqtile.interactive.iqshell_install

If you run this as a non-root user, or pass the --user flag, this will install to the user Jupyter kernel directory. You
can now invoke the kernel directly when starting a Jupyter frontend, for example:

$ jupyter console --kernel qshell

The iqshell script will launch a Jupyter terminal console with the qshell kernel.

iqshell vs qtile shell

One of the main drawbacks of running through a Jupyter kernel is the frontend has no way to query the current node
of the kernel, and as such, there is no way to set a custom prompt. In order to query your current node, you can call
pwd.

This, however, enables many of the benefits of running in a Jupyter frontend, including being able to save, run, and
re-run code cells in frontends such as the Jupyter notebook.

The Jupyter kernel also enables more advanced help, text completion, and introspection capabilities (however, these
are currently not implemented at a level much beyond what is available in the standard qtile shell).

• Built-in Extensions

32 Chapter 1. Getting started

https://pypi.python.org/pypi/ipykernel
https://pypi.python.org/pypi/jupyter_console

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

• Built-in Hooks

• Built-in Layouts

• Built-in Widgets

1.5 Reference

1.5.1 Built-in Hooks

subscribe.addgroup(func)
Called when group is added

Arguments

• name of new group

subscribe.changegroup(func)
Called whenever a group change occurs

Arguments

None

subscribe.client_focus(func)
Called whenever focus changes

Arguments

• window.Window object of the new focus.

subscribe.client_killed(func)
Called after a client has been unmanaged

Arguments

• window.Window object of the killed window.

subscribe.client_managed(func)
Called after Qtile starts managing a new client

Called after a window is assigned to a group, or when a window is made static. This hook is not called for
internal windows.

Arguments

• window.Window object of the managed window

subscribe.client_mouse_enter(func)
Called when the mouse enters a client

Arguments

• window.Window of window entered

subscribe.client_name_updated(func)
Called when the client name changes

Arguments

• window.Window of client with updated name

1.5. Reference 33

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

subscribe.client_new(func)
Called before Qtile starts managing a new client

Use this hook to declare windows static, or add them to a group on startup. This hook is not called for internal
windows.

Arguments

• window.Window object

Examples

@libqtile.hook.subscribe.client_new
def func(c):

if c.name == "xterm":
c.togroup("a")

elif c.name == "dzen":
c.cmd_static(0)

subscribe.client_urgent_hint_changed(func)
Called when the client urgent hint changes

Arguments

• window.Window of client with hint change

subscribe.current_screen_change(func)
Called when the current screen (i.e. the screen with focus) changes

Arguments

None

subscribe.delgroup(func)
Called when group is deleted

Arguments

• name of deleted group

subscribe.enter_chord(func)
Called when key chord begins

Arguments

• name of chord(mode)

subscribe.float_change(func)
Called when a change in float state is made

Arguments

None

subscribe.focus_change(func)
Called when focus is changed

Arguments

None

subscribe.group_window_add(func)
Called when a new window is added to a group

34 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Arguments

None

subscribe.layout_change(func)
Called on layout change

Arguments

• layout object for new layout

• group object on which layout is changed

subscribe.leave_chord(func)
Called when key chord ends

Arguments

None

subscribe.net_wm_icon_change(func)
Called on _NET_WM_ICON chance

Arguments

• window.Window of client with changed icon

subscribe.restart(func)
Called before qtile is restarted

Arguments

None

subscribe.screen_change(func)
Called when a screen is added or screen configuration is changed (via xrandr)

Common usage is simply to call qtile.cmd_restart() on each event (to restart qtile when there is a new
monitor):

Arguments

• xproto.randr.ScreenChangeNotify event

Examples

@libqtile.hook.subscribe.screen_change
def restart_on_randr(ev):

libqtile.qtile.cmd_restart()

subscribe.selection_change(func)
Called on selection change

Arguments

• name of the selection

• dictionary describing selection, containing owner and selection as keys

subscribe.selection_notify(func)
Called on selection notify

Arguments

• name of the selection

1.5. Reference 35

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

• dictionary describing selection, containing owner and selection as keys

subscribe.setgroup(func)
Called when group is changed

Arguments

None

subscribe.shutdown(func)
Called before qtile is shutdown

Arguments

None

subscribe.startup(func)
Called when qtile is started

Arguments

None

subscribe.startup_complete(func)
Called when qtile is started after all resources initialized

Arguments

None

subscribe.startup_once(func)
Called when Qtile has started on first start

This hook is called exactly once per session (i.e. not on each lazy.restart()).

Arguments

None

1.5.2 Built-in Layouts

Floating

class libqtile.layout.floating.Floating(float_rules=None, no_reposition_rules=None,
**config)

Floating layout, which does nothing with windows but handles focus order

key default description
border_focus '#0000ff' ‘Border colour for the focused window.’
border_normal '#000000' ‘Border colour for un-focused windows.’
border_width 1 ‘Border width.’
fullscreen_border_width0 ‘Border width for fullscreen.’
max_border_width0 ‘Border width for maximize.’
name 'floating' ‘Name of this layout.’

36 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Bsp

class libqtile.layout.bsp.Bsp(**config)
This layout is inspired by bspwm, but it does not try to copy its features.

The first client occupies the entire screen space. When a new client is created, the selected space is partitioned
in 2 and the new client occupies one of those subspaces, leaving the old client with the other.

The partition can be either horizontal or vertical according to the dimensions of the current space: if its
width/height ratio is above a pre-configured value, the subspaces are created side-by-side, otherwise, they are
created on top of each other. The partition direction can be freely toggled. All subspaces can be resized and
clients can be shuffled around.

All clients are organized at the leaves of a full binary tree.

An example key configuration is:

Key([mod], "j", lazy.layout.down()),
Key([mod], "k", lazy.layout.up()),
Key([mod], "h", lazy.layout.left()),
Key([mod], "l", lazy.layout.right()),
Key([mod, "shift"], "j", lazy.layout.shuffle_down()),
Key([mod, "shift"], "k", lazy.layout.shuffle_up()),
Key([mod, "shift"], "h", lazy.layout.shuffle_left()),
Key([mod, "shift"], "l", lazy.layout.shuffle_right()),
Key([mod, "mod1"], "j", lazy.layout.flip_down()),
Key([mod, "mod1"], "k", lazy.layout.flip_up()),
Key([mod, "mod1"], "h", lazy.layout.flip_left()),
Key([mod, "mod1"], "l", lazy.layout.flip_right()),
Key([mod, "control"], "j", lazy.layout.grow_down()),
Key([mod, "control"], "k", lazy.layout.grow_up()),
Key([mod, "control"], "h", lazy.layout.grow_left()),
Key([mod, "control"], "l", lazy.layout.grow_right()),
Key([mod, "shift"], "n", lazy.layout.normalize()),
Key([mod], "Return", lazy.layout.toggle_split()),

key default description
border_focus '#881111' ‘Border colour for the focused window.’
border_normal '#220000' ‘Border colour for un-focused windows.’
border_width 2 ‘Border width.’
fair True ‘New clients are inserted in the shortest branch.’
grow_amount 10 ‘Amount by which to grow a window/column.’
lower_right True ‘New client occupies lower or right subspace.’
margin 0 ‘Margin of the layout (int or list of ints [N E S W]).’
name 'bsp' ‘Name of this layout.’
ratio 1.6 ‘Width/height ratio that defines the partition direction.’

1.5. Reference 37

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Columns

class libqtile.layout.columns.Columns(**config)
Extension of the Stack layout.

The screen is split into columns, which can be dynamically added or removed. Each column can present its
windows in 2 modes: split or stacked. In split mode, all windows are presented simultaneously, spliting the
column space. In stacked mode, only a single window is presented from the stack of windows. Columns and
windows can be resized and windows can be shuffled around.

This layout can also emulate wmii’s default layout via:

layout.Columns(num_columns=1, insert_position=1)

Or the “Vertical”, and “Max”, depending on the default parameters.

An example key configuration is:

Key([mod], "j", lazy.layout.down()),
Key([mod], "k", lazy.layout.up()),
Key([mod], "h", lazy.layout.left()),
Key([mod], "l", lazy.layout.right()),
Key([mod, "shift"], "j", lazy.layout.shuffle_down()),
Key([mod, "shift"], "k", lazy.layout.shuffle_up()),
Key([mod, "shift"], "h", lazy.layout.shuffle_left()),
Key([mod, "shift"], "l", lazy.layout.shuffle_right()),
Key([mod, "control"], "j", lazy.layout.grow_down()),
Key([mod, "control"], "k", lazy.layout.grow_up()),
Key([mod, "control"], "h", lazy.layout.grow_left()),
Key([mod, "control"], "l", lazy.layout.grow_right()),
Key([mod], "Return", lazy.layout.toggle_split()),
Key([mod], "n", lazy.layout.normalize()),

key default description
border_focus '#881111' ‘Border colour for the focused window.’
border_focus_stack'#881111' ‘Border colour for the focused window in stacked columns.’
border_normal '#220000' ‘Border colour for un-focused windows.’
border_normal_stack'#220000' ‘Border colour for un-focused windows in stacked columns.’
border_on_singleFalse ‘Draw a border when there is one only window.’
border_width 2 ‘Border width.’
fair False ‘Add new windows to the column with least windows.’
grow_amount 10 ‘Amount by which to grow a window/column.’
insert_position0 ‘Position relative to the current window where new ones are in-

serted (0 means right above the current window, 1 means right
after).’

margin 0 ‘Margin of the layout (int or list of ints [N E S W]).’
margin_on_single-1 ‘Margin when only one window. -1 means use margin.’
name 'columns' ‘Name of this layout.’
num_columns 2 ‘Preferred number of columns.’
split True ‘New columns presentation mode.’
wrap_focus_columnsTrue ‘Wrap the screen when moving focus across columns.’
wrap_focus_rowsTrue ‘Wrap the screen when moving focus across rows.’
wrap_focus_stacksTrue ‘Wrap the screen when moving focus across stacked.’

38 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Matrix

class libqtile.layout.matrix.Matrix(columns=2, **config)
This layout divides the screen into a matrix of equally sized cells and places one window in each cell. The
number of columns is configurable and can also be changed interactively.

key default description
border_focus '#0000ff' ‘Border colour for the focused window.’
border_normal '#000000' ‘Border colour for un-focused windows.’
border_width 1 ‘Border width.’
margin 0 ‘Margin of the layout (int or list of ints [N E S W])’
name 'matrix' ‘Name of this layout.’

Max

class libqtile.layout.max.Max(**config)
Maximized layout

A simple layout that only displays one window at a time, filling the screen_rect. This is suitable for use on lap-
tops and other devices with small screens. Conceptually, the windows are managed as a stack, with commands
to switch to next and previous windows in the stack.

key default description
name 'max' ‘Name of this layout.’

MonadTall

class libqtile.layout.xmonad.MonadTall(**config)
Emulate the behavior of XMonad’s default tiling scheme.

Main-Pane:

A main pane that contains a single window takes up a vertical portion of the screen_rect based on the ratio
setting. This ratio can be adjusted with the cmd_grow_main and cmd_shrink_main or, while the main
pane is in focus, cmd_grow and cmd_shrink.

Using the cmd_flip method will switch which horizontal side the main pane will occupy. The main pane is
considered the “top” of the stack.

(continues on next page)

1.5. Reference 39

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

| | |
| | |

Secondary-panes:

Occupying the rest of the screen_rect are one or more secondary panes. The secondary panes will share the
vertical space of the screen_rect however they can be resized at will with the cmd_grow and cmd_shrink
methods. The other secondary panes will adjust their sizes to smoothly fill all of the space.

--------------------- ---------------------

--------------------- ---------------------

Panes can be moved with the cmd_shuffle_up and cmd_shuffle_down methods. As mentioned the
main pane is considered the top of the stack; moving up is counter-clockwise and moving down is clockwise.

The opposite is true if the layout is “flipped”.

--------------------- ---------------------
	2		2	
	______		_______	
	3		3	
1	______		_______	1
	4		4	
--------------------- ---------------------

Normalizing/Resetting:

To restore all secondary client windows to their default size ratios use the cmd_normalize method.

To reset all client windows to their default sizes, including the primary window, use the cmd_reset method.

Maximizing:

To toggle a client window between its minimum and maximum sizes simply use the cmd_maximize on a
focused client.

Suggested Bindings:

Key([modkey], "h", lazy.layout.left()),
Key([modkey], "l", lazy.layout.right()),
Key([modkey], "j", lazy.layout.down()),
Key([modkey], "k", lazy.layout.up()),
Key([modkey, "shift"], "h", lazy.layout.swap_left()),
Key([modkey, "shift"], "l", lazy.layout.swap_right()),
Key([modkey, "shift"], "j", lazy.layout.shuffle_down()),
Key([modkey, "shift"], "k", lazy.layout.shuffle_up()),
Key([modkey], "i", lazy.layout.grow()),
Key([modkey], "m", lazy.layout.shrink()),
Key([modkey], "n", lazy.layout.normalize()),
Key([modkey], "o", lazy.layout.maximize()),
Key([modkey, "shift"], "space", lazy.layout.flip()),

40 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
align 0 ‘Which side master plane will be placed (one of MonadTall.

_left or MonadTall._right)’
border_focus '#ff0000' ‘Border colour for the focused window.’
border_normal '#000000' ‘Border colour for un-focused windows.’
border_width 2 ‘Border width.’
change_ratio 0.05 ‘Resize ratio’
change_size 20 ‘Resize change in pixels’
margin 0 ‘Margin of the layout’
max_ratio 0.75 ‘The percent of the screen-space the master pane should occupy

at maximum.’
min_ratio 0.25 ‘The percent of the screen-space the master pane should occupy

at minimum.’
min_secondary_size85 ‘minimum size in pixel for a secondary pane window ‘
name 'xmonadtall' ‘Name of this layout.’
new_at_current False ‘Place new windows at the position of the active window.’
ratio 0.5 ‘The percent of the screen-space the master pane should occupy

by default.’
single_border_widthNone ‘Border width for single window’
single_margin None ‘Margin size for single window’

MonadWide

class libqtile.layout.xmonad.MonadWide(**config)
Emulate the behavior of XMonad’s horizontal tiling scheme.

This layout attempts to emulate the behavior of XMonad wide tiling scheme.

Main-Pane:

A main pane that contains a single window takes up a horizontal portion of the screen_rect based on the ratio
setting. This ratio can be adjusted with the cmd_grow_main and cmd_shrink_main or, while the main
pane is in focus, cmd_grow and cmd_shrink.

| |
| |
| |
|___________________|
| |

Using the cmd_flip method will switch which vertical side the main pane will occupy. The main pane is
considered the “top” of the stack.

| |
|___________________|
| |
| |
| |

1.5. Reference 41

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Secondary-panes:

Occupying the rest of the screen_rect are one or more secondary panes. The secondary panes will share the
horizontal space of the screen_rect however they can be resized at will with the cmd_grow and cmd_shrink
methods. The other secondary panes will adjust their sizes to smoothly fill all of the space.

--------------------- ---------------------
___________________		___________________				
--------------------- ---------------------

Panes can be moved with the cmd_shuffle_up and cmd_shuffle_down methods. As mentioned the
main pane is considered the top of the stack; moving up is counter-clockwise and moving down is clockwise.

The opposite is true if the layout is “flipped”.

--------------------- ---------------------
		2	3	4
1		_____	_______	_____

				1
2	3	4		
--------------------- ---------------------

Normalizing/Resetting:

To restore all secondary client windows to their default size ratios use the cmd_normalize method.

To reset all client windows to their default sizes, including the primary window, use the cmd_reset method.

Maximizing:

To toggle a client window between its minimum and maximum sizes simply use the cmd_maximize on a
focused client.

Suggested Bindings:

Key([modkey], "h", lazy.layout.left()),
Key([modkey], "l", lazy.layout.right()),
Key([modkey], "j", lazy.layout.down()),
Key([modkey], "k", lazy.layout.up()),
Key([modkey, "shift"], "h", lazy.layout.swap_left()),
Key([modkey, "shift"], "l", lazy.layout.swap_right()),
Key([modkey, "shift"], "j", lazy.layout.shuffle_down()),
Key([modkey, "shift"], "k", lazy.layout.shuffle_up()),
Key([modkey], "i", lazy.layout.grow()),
Key([modkey], "m", lazy.layout.shrink()),
Key([modkey], "n", lazy.layout.normalize()),
Key([modkey], "o", lazy.layout.maximize()),
Key([modkey, "shift"], "space", lazy.layout.flip()),

42 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
align 0 ‘Which side master plane will be placed (one of MonadTall.

_left or MonadTall._right)’
border_focus '#ff0000' ‘Border colour for the focused window.’
border_normal '#000000' ‘Border colour for un-focused windows.’
border_width 2 ‘Border width.’
change_ratio 0.05 ‘Resize ratio’
change_size 20 ‘Resize change in pixels’
margin 0 ‘Margin of the layout’
max_ratio 0.75 ‘The percent of the screen-space the master pane should occupy

at maximum.’
min_ratio 0.25 ‘The percent of the screen-space the master pane should occupy

at minimum.’
min_secondary_size85 ‘minimum size in pixel for a secondary pane window ‘
name 'xmonadtall' ‘Name of this layout.’
new_at_current False ‘Place new windows at the position of the active window.’
ratio 0.5 ‘The percent of the screen-space the master pane should occupy

by default.’
single_border_widthNone ‘Border width for single window’
single_margin None ‘Margin size for single window’

RatioTile

class libqtile.layout.ratiotile.RatioTile(**config)
Tries to tile all windows in the width/height ratio passed in

key default description
border_focus '#0000ff' ‘Border colour for the focused window.’
border_normal '#000000' ‘Border colour for un-focused windows.’
border_width 1 ‘Border width.’
fancy False ‘Use a different method to calculate window sizes.’
margin 0 ‘Margin of the layout (int or list of ints [N E S W])’
name 'ratiotile' ‘Name of this layout.’
ratio 1.618 ‘Ratio of the tiles’
ratio_increment0.1 ‘Amount to increment per ratio increment’

1.5. Reference 43

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Slice

class libqtile.layout.slice.Slice(**config)
Slice layout

This layout cuts piece of screen_rect and places a single window on that piece, and delegates other window
placement to other layout

key default description
fallback <libqtile.

layout.
max.Max
object at
0x7f7c10d7a8d0>

‘Layout to be used for the non-slice area.’

match None ‘Match-object describing which window(s) to move to the slice.’
name 'slice' ‘Name of this layout.’
side 'left' ‘Position of the slice (left, right, top, bottom).’
width 256 ‘Slice width.’

Stack

class libqtile.layout.stack.Stack(**config)
A layout composed of stacks of windows

The stack layout divides the screen_rect horizontally into a set of stacks. Commands allow you to switch
between stacks, to next and previous windows within a stack, and to split a stack to show all windows in the
stack, or unsplit it to show only the current window.

Unlike the columns layout the number of stacks is fixed.

key default description
autosplit False ‘Auto split all new stacks.’
border_focus '#0000ff' ‘Border colour for the focused window.’
border_normal '#000000' ‘Border colour for un-focused windows.’
border_width 1 ‘Border width.’
fair False ‘Add new windows to the stacks in a round robin way.’
margin 0 ‘Margin of the layout (int or list of ints [N E S W])’
name 'stack' ‘Name of this layout.’
num_stacks 2 ‘Number of stacks.’

Tile

class libqtile.layout.tile.Tile(**config)
A layout with two stacks of windows dividing the screen

The Tile layout divides the screen_rect horizontally into two stacks. The maximum amount of “master” windows
can be configured; surplus windows will be displayed in the slave stack on the right. Within their stacks, the
windows will be tiled vertically. The windows can be rotated in their entirety by calling up() or down() or, if
shift_windows is set to True, individually.

44 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
add_after_last False ‘Add new clients after all the others. If this is True, it overrides

add_on_top.’
add_on_top True ‘Add new clients before all the others, potentially pushing other

windows into slave stack.’
border_focus '#0000ff' ‘Border colour for the focused window.’
border_normal '#000000' ‘Border colour for un-focused windows.’
border_width 1 ‘Border width.’
expand True ‘Expand the master windows to the full screen width if no slaves

are present.’
margin 0 ‘Margin of the layout (int or list of ints [N E S W])’
master_length 1 ‘Amount of windows displayed in the master stack. Surplus

windows will be moved to the slave stack.’
master_match None ‘A Match object defining which window(s) should be kept mas-

ters.’
name 'tile' ‘Name of this layout.’
ratio 0.618 ‘Width-percentage of screen size reserved for master windows.’
ratio_increment0.05 ‘By which amount to change ratio when cmd_decrease_ratio or

cmd_increase_ratio are called.’
shift_windows False ‘Allow to shift windows within the layout. If False, the layout

will be rotated instead.’

TreeTab

class libqtile.layout.tree.TreeTab(**config)
Tree Tab Layout

This layout works just like Max but displays tree of the windows at the left border of the screen_rect, which
allows you to overview all opened windows. It’s designed to work with uzbl-browser but works with other
windows too.

The panel at the left border contains sections, each of which contains windows. Initially the panel looks like flat
lists inside its section, and looks like trees if some of the windows are “moved” left or right.

For example, it looks like below with two sections initially:

+------------+
|Section Foo |
+------------+
| Window A |
+------------+
| Window B |
+------------+
| Window C |
+------------+
|Section Bar |
+------------+

And then it will look like below if “Window B” is moved right and “Window C” is moved right too:

+------------+
|Section Foo |
+------------+
| Window A |

(continues on next page)

1.5. Reference 45

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

+------------+
| Window B |
+------------+
| Window C |
+------------+
|Section Bar |
+------------+

key default description
active_bg '000080' ‘Background color of active tab’
active_fg 'ffffff' ‘Foreground color of active tab’
bg_color '000000' ‘Background color of tabs’
border_width 2 ‘Width of the border’
font 'sans' ‘Font’
fontshadow None ‘font shadow color, default is None (no shadow)’
fontsize 14 ‘Font pixel size.’
inactive_bg '606060' ‘Background color of inactive tab’
inactive_fg 'ffffff' ‘Foreground color of inactive tab’
level_shift 8 ‘Shift for children tabs’
margin_left 6 ‘Left margin of tab panel’
margin_y 6 ‘Vertical margin of tab panel’
name 'treetab' ‘Name of this layout.’
padding_left 6 ‘Left padding for tabs’
padding_x 6 ‘Left padding for tab label’
padding_y 2 ‘Top padding for tab label’
panel_width 150 ‘Width of the left panel’
previous_on_rm False ‘Focus previous window on close instead of first.’
section_bottom 6 ‘Bottom margin of section’
section_fg 'ffffff' ‘Color of section label’
section_fontsize11 ‘Font pixel size of section label’
section_left 4 ‘Left margin of section label’
section_padding4 ‘Bottom of margin section label’
section_top 4 ‘Top margin of section label’
sections ['Default'] ‘Foreground color of inactive tab’
urgent_bg 'ff0000' ‘Background color of urgent tab’
urgent_fg 'ffffff' ‘Foreground color of urgent tab’
vspace 2 ‘Space between tabs’

VerticalTile

class libqtile.layout.verticaltile.VerticalTile(**config)
Tiling layout that works nice on vertically mounted monitors

The available height gets divided by the number of panes, if no pane is maximized. If one pane has been
maximized, the available height gets split in master- and secondary area. The maximized pane (master pane)
gets the full height of the master area and the other panes (secondary panes) share the remaining space. The
master area (at default 75%) can grow and shrink via keybindings.

----------------- ----------------- ---
| | | | |
| 1 | <-- Panes | | |

(continues on next page)

46 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

2	<-----+	1		Master Area

3	<-----+			
---------------			---------------	---
			2	
4	<-----+	---------------		Secondary Area
		3		
----------------- ----------------- ---

Normal behavior. No One maximized pane in the master area maximized pane. No and two secondary panes in
the specific areas. secondary area.

----------------------------------- In some cases VerticalTile can be
| | useful on horizontal mounted
| 1 | monitors two.
| | For example if you want to have a
|---------------------------------| webbrowser and a shell below it.
| |
| 2 |

Suggested keybindings:

Key([modkey], 'j', lazy.layout.down()),
Key([modkey], 'k', lazy.layout.up()),
Key([modkey], 'Tab', lazy.layout.next()),
Key([modkey, 'shift'], 'Tab', lazy.layout.next()),
Key([modkey, 'shift'], 'j', lazy.layout.shuffle_down()),
Key([modkey, 'shift'], 'k', lazy.layout.shuffle_up()),
Key([modkey], 'm', lazy.layout.maximize()),
Key([modkey], 'n', lazy.layout.normalize()),

key default description
border_focus '#FF0000' ‘Border color for the focused window.’
border_normal '#FFFFFF' ‘Border color for un-focused windows.’
border_width 1 ‘Border width.’
margin 0 ‘Border margin (int or list of ints [N E S W]).’
name 'verticaltile' ‘Name of this layout.’

1.5. Reference 47

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Zoomy

class libqtile.layout.zoomy.Zoomy(**config)
A layout with single active windows, and few other previews at the right

key default description
columnwidth 150 ‘Width of the right column’
margin 0 ‘Margin of the layout (int or list of ints [N E S W])’
name 'zoomy' ‘Name of this layout.’
property_big '1.0' ‘Property value to set on normal window’
property_name 'ZOOM' ‘Property to set on zoomed window’
property_small '0.1' ‘Property value to set on zoomed window’

1.5.3 Built-in Widgets

AGroupBox

class libqtile.widget.AGroupBox(**config)
A widget that graphically displays the current group

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
border '000000' ‘group box border color’
borderwidth 3 ‘Current group border width’
center_aligned True ‘center-aligned group box’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
margin 3 ‘Margin inside the box’
margin_x None “X Margin. Overrides ‘margin’ if set”
margin_y None “Y Margin. Overrides ‘margin’ if set”
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
padding_x None “X Padding. Overrides ‘padding’ if set”
padding_y None “Y Padding. Overrides ‘padding’ if set”

Backlight

class libqtile.widget.Backlight(**config)
A simple widget to show the current brightness of a monitor.

If the change_command parameter is set to None, the widget will attempt to use the interface at /sys/class to
change brightness. Depending on the setup, the user may need to be added to the video group to have permission
to write to this interface. This depends on having the correct udev rules the brightness file; these are typically
installed alongside brightness tools such as brightnessctl (which changes the group to ‘video’) so installing that
is an easy way to get it working.

48 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

You can also bind keyboard shortcuts to the backlight widget with:

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
backlight_name 'acpi_video0' ‘ACPI name of a backlight device’
brightness_file'brightness' ‘Name of file with the current brightness in

/sys/class/backlight/backlight_name’
change_command 'xbacklight

-set {0}'
‘Execute command to change value’

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format '{percent:2.

0%}'
‘Display format’

markup True ‘Whether or not to use pango markup’
max_brightness_file'max_brightness'‘Name of file with the maximum brightness in

/sys/class/backlight/backlight_name’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
step 10 ‘Percent of backlight every scroll changed’
update_interval0.2 ‘The delay in seconds between updates’

Battery

class libqtile.widget.Battery(**config)
A text-based battery monitoring widget currently supporting FreeBSD

Supported bar orientations: horizontal only

1.5. Reference 49

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
battery 0 ‘Which battery should be monitored (battery number or name)’
charge_char '^' ‘Character to indicate the battery is charging’
discharge_char 'V' ‘Character to indicate the battery is discharging’
empty_char 'x' ‘Character to indicate the battery is empty’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format '{char}

{percent:2.
0%}
{hour:d}:{min:02d}
{watt:.2f}
W'

‘Display format’

full_char '=' ‘Character to indicate the battery is full’
hide_threshold None ‘Hide the text when there is enough energy 0 <= x < 1’
low_foreground 'FF0000' ‘Font color on low battery’
low_percentage 0.1 ‘Indicates when to use the low_foreground color 0 < x < 1’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
notify_below None ‘Send a notification below this battery level.’
padding None ‘Padding. Calculated if None.’
show_short_textTrue ‘Show “Full” or “Empty” rather than formated text’
unknown_char '?' ‘Character to indicate the battery status is unknown’
update_interval60 ‘Seconds between status updates’

BatteryIcon

class libqtile.widget.BatteryIcon(**config)
Battery life indicator widget.

Supported bar orientations: horizontal only

50 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
battery 0 ‘Which battery should be monitored’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
theme_path '/home/docs/

checkouts/
readthedocs.
org/
user_builds/
qtile/
checkouts/
v0.17.0/
libqtile/
resources/
battery-icons'

‘Path of the icons’

update_interval60 ‘Seconds between status updates’

BitcoinTicker

class libqtile.widget.BitcoinTicker(**config)
A bitcoin ticker widget, data provided by the coinbase.com API. Defaults to displaying currency in whatever
the current locale is. Examples:

display the average price of bitcoin in local currency
widget.BitcoinTicker()

display it in Euros:
widget.BitcoinTicker(currency="EUR")

Supported bar orientations: horizontal only

1.5. Reference 51

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
currency '' ‘The currency the value that bitcoin is displayed in’
data None ‘Post Data’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
headers {} ‘Extra Headers’
json True ‘Is Json?’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
parse None ‘Parse Function’
update_interval600 “Update interval in seconds, if none, the widget updates when-

ever it’s done’.”
url None ‘Url’
user_agent 'Qtile' ‘Set the user agent’
xml False ‘Is XML?’

CPU

class libqtile.widget.CPU(**config)
A simple widget to display CPU load and frequency.

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format 'CPU

{freq_current}GHz
{load_percent}%'

‘CPU display format’

markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_interval1.0 ‘Update interval for the CPU widget’

52 Chapter 1. Getting started

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

CPUGraph

class libqtile.widget.CPUGraph(**config)
Display CPU usage graph.

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
border_color '215578' ‘Widget border color’
border_width 2 ‘Widget border width’
core 'all' ‘Which core to show (all/0/1/2/. . .)’
fill_color '1667EB.3' ‘Fill color for linefill graph’
frequency 1 ‘Update frequency in seconds’
graph_color '18BAEB' ‘Graph color’
line_width 3 ‘Line width’
margin_x 3 ‘Margin X’
margin_y 3 ‘Margin Y’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
samples 100 ‘Count of graph samples.’
start_pos 'bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill' “‘box’, ‘line’, ‘linefill’”

Canto

class libqtile.widget.Canto(**config)
Display RSS feeds updates using the canto console reader

Supported bar orientations: horizontal only

key default description
all_format '{number}' ‘All feeds display format’
background None ‘Widget background color’
feeds [] ‘List of feeds to display, empty for all’
fetch False ‘Whether to fetch new items on update’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
one_format '{name}:

{number}'
‘One feed display format’

padding None ‘Padding. Calculated if None.’
update_interval600 “Update interval in seconds, if none, the widget updates when-

ever it’s done’.”

1.5. Reference 53

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

CapsNumLockIndicator

class libqtile.widget.CapsNumLockIndicator(**config)
Really simple widget to show the current Caps/Num Lock state.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_interval0.5 ‘Update Time in seconds.’

CheckUpdates

class libqtile.widget.CheckUpdates(**config)
Shows number of pending updates in different unix systems

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
colour_have_updates'ffffff' ‘Colour when there are updates.’
colour_no_updates'ffffff' “Colour when there’s no updates.”
custom_command None ‘Custom shell command for checking updates (counts the lines

of the output)’
display_format 'Updates:

{updates}'
‘Display format if updates available’

distro 'Arch' ‘Name of your distribution’
execute None ‘Command to execute on click’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
no_update_string'' ‘String to display if no updates available’
padding None ‘Padding. Calculated if None.’
restart_indicator'' ‘Indicator to represent reboot is required. (Ubuntu only)’
update_interval60 ‘Update interval in seconds.’

54 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Chord

class libqtile.widget.Chord(width=CALCULATED, **config)
Display current key chord

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
chords_colors {} “colors per chord in form of tuple (‘bg’, ‘fg’).”
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
name_transform <function

Chord.
<lambda> at
0x7f7c1065bb00>

‘preprocessor for chord name it is pure function string -> string’

padding None ‘Padding. Calculated if None.’

Clipboard

class libqtile.widget.Clipboard(width=CALCULATED, **config)
Display current clipboard contents

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
blacklist ['keepassx'] ‘list with blacklisted wm_class, sadly not every clipboard

window sets them, keepassx does.Clipboard contents from
blacklisted wm_classes will be replaced by the value of
blacklist_text.’

blacklist_text '***********' ‘text to display when the wm_class is blacklisted’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
max_width 10 ‘maximum number of characters to display (None for all, useful

when width is bar.STRETCH)’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
selection 'CLIPBOARD' ‘the selection to display(CLIPBOARD or PRIMARY)’
timeout 10 ‘Default timeout (seconds) for display text, None to keep for-

ever’

1.5. Reference 55

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Clock

class libqtile.widget.Clock(**config)
A simple but flexible text-based clock

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format '%H:%M' ‘A Python datetime format string’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
timezone None ‘The timezone to use for this clock, either as string if pytz

or dateutil is installed (e.g. “US/Central” or anything in
/usr/share/zoneinfo), or as tzinfo (e.g. datetime.timezone.utc).
None means the system local timezone and is the default.’

update_interval1.0 ‘Update interval for the clock’

Cmus

class libqtile.widget.Cmus(**config)
A simple Cmus widget.

Show the artist and album of now listening song and allow basic mouse control from the bar:

• toggle pause (or play if stopped) on left click;

• skip forward in playlist on scroll up;

• skip backward in playlist on scroll down.

Cmus (https://cmus.github.io) should be installed.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
max_chars 0 ‘Maximum number of characters to display in widget.’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
noplay_color 'cecece' ‘Text colour when not playing.’
padding None ‘Padding. Calculated if None.’
play_color '00ff00' ‘Text colour when playing.’
update_interval0.5 ‘Update Time in seconds.’

56 Chapter 1. Getting started

https://cmus.github.io

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Countdown

class libqtile.widget.Countdown(**config)
A simple countdown timer text widget

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
date datetime.

datetime(2021,
2, 13, 14,
44, 15,
499566)

‘The datetime for the endo of the countdown’

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format '{D}d {H}h

{M}m {S}s'
‘Format of the displayed text. Available variables:{D} == days,
{H} == hours, {M} == minutes, {S} seconds.’

markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_interval1.0 ‘Update interval in seconds for the clock’

CurrentLayout

class libqtile.widget.CurrentLayout(width=CALCULATED, **config)
Display the name of the current layout of the current group of the screen, the bar containing the widget, is on.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’

1.5. Reference 57

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

CurrentLayoutIcon

class libqtile.widget.CurrentLayoutIcon(**config)
Display the icon representing the current layout of the current group of the screen on which the bar containing
the widget is.

If you are using custom layouts, a default icon with question mark will be displayed for them. If you want to
use custom icon for your own layout, for example, FooGrid, then create a file named “layout-foogrid.png” and
place it in ~/.icons directory. You can as well use other directories, but then you need to specify those directories
in custom_icon_paths argument for this plugin.

The order of icon search is:

• dirs in custom_icon_paths config argument

• ~/.icons

• built-in qtile icons

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
custom_icon_paths[] ‘List of folders where to search icons beforeusing built-in icons

or icons in ~/.icons dir. This can also be used to providemissing
icons for custom layouts. Defaults to empty list.’

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
scale 1 ‘Scale factor relative to the bar height. Defaults to 1’

CurrentScreen

class libqtile.widget.CurrentScreen(width=CALCULATED, **config)
Indicates whether the screen this widget is on is currently active or not

Supported bar orientations: horizontal only

58 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
active_color '00ff00' ‘Color when screen is active’
active_text 'A' ‘Text displayed when the screen is active’
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
inactive_color 'ff0000' ‘Color when screen is inactive’
inactive_text 'I' ‘Text displayed when the screen is inactive’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’

DF

class libqtile.widget.DF(**config)
Disk Free Widget

By default the widget only displays if the space is less than warn_space.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format '{p}

({uf}{m}|{r:.
0f}%)'

‘String format (p: partition, s: size, f: free space, uf: user free
space, m: measure, r: ratio (uf/s))’

markup True ‘Whether or not to use pango markup’
measure 'G' ‘Measurement (G, M, B)’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
partition '/' ‘the partition to check space’
update_interval60 ‘The update interval.’
visible_on_warnTrue ‘Only display if warning’
warn_color 'ff0000' ‘Warning color’
warn_space 2 ‘Warning space in scale defined by the measure option.’

1.5. Reference 59

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

DebugInfo

class libqtile.widget.DebugInfo(**config)
Displays debugging infos about selected window

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’

GenPollText

class libqtile.widget.GenPollText(**config)
A generic text widget that polls using poll function to get the text

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
func None ‘Poll Function’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_interval600 “Update interval in seconds, if none, the widget updates when-

ever it’s done’.”

GenPollUrl

class libqtile.widget.GenPollUrl(**config)
A generic text widget that polls an url and parses it using parse function

Supported bar orientations: horizontal only

60 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
data None ‘Post Data’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
headers {} ‘Extra Headers’
json True ‘Is Json?’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
parse None ‘Parse Function’
update_interval600 “Update interval in seconds, if none, the widget updates when-

ever it’s done’.”
url None ‘Url’
user_agent 'Qtile' ‘Set the user agent’
xml False ‘Is XML?’

GmailChecker

class libqtile.widget.GmailChecker(**config)
A simple gmail checker. If ‘status_only_unseen’ is True - set ‘fmt’ for one argument, ex. ‘unseen: {0}’

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
display_fmt 'inbox[{0}],

unseen[{1}]'
‘Display format’

email_path 'INBOX' ‘email_path’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
password None ‘password’
status_only_unseenFalse ‘Only show unseen messages’
update_interval30 ‘Update time in seconds.’
username None ‘username’

1.5. Reference 61

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

GroupBox

class libqtile.widget.GroupBox(**config)
A widget that graphically displays the current group. All groups are displayed by their label. If the label of a
group is the empty string that group will not be displayed.

Supported bar orientations: horizontal only

key default description
active 'FFFFFF' ‘Active group font colour’
background None ‘Widget background color’
block_highlight_text_colorNone ‘Selected group font colour’
borderwidth 3 ‘Current group border width’
center_aligned True ‘center-aligned group box’
disable_drag False ‘Disable dragging and dropping of group names on widget’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
hide_unused False ‘Hide groups that have no windows and that are not displayed

on any screen.’
highlight_color['000000',

'282828']
“Active group highlight color when using ‘line’ highlight
method.”

highlight_method'border' “Method of highlighting (‘border’, ‘block’, ‘text’, or ‘line’)Uses
*_border color settings”

inactive '404040' ‘Inactive group font colour’
invert_mouse_wheelFalse ‘Whether to invert mouse wheel group movement’
margin 3 ‘Margin inside the box’
margin_x None “X Margin. Overrides ‘margin’ if set”
margin_y None “Y Margin. Overrides ‘margin’ if set”
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
other_current_screen_border'404040' ‘Border or line colour for group on other screen when focused.’
other_screen_border'404040' ‘Border or line colour for group on other screen when unfo-

cused.’
padding None ‘Padding. Calculated if None.’
padding_x None “X Padding. Overrides ‘padding’ if set”
padding_y None “Y Padding. Overrides ‘padding’ if set”
rounded True ‘To round or not to round box borders’
spacing None ‘Spacing between groups(if set to None, will be equal to mar-

gin_x)’
this_current_screen_border'215578' ‘Border or line colour for group on this screen when focused.’
this_screen_border'215578' ‘Border or line colour for group on this screen when unfocused.’
urgent_alert_method'border' “Method for alerting you of WM urgent hints (one of ‘border’,

‘text’, ‘block’, or ‘line’)”
urgent_border 'FF0000' ‘Urgent border or line color’
urgent_text 'FF0000' ‘Urgent group font color’
use_mouse_wheelTrue ‘Whether to use mouse wheel events’
visible_groups None ‘Groups that will be visible. If set to None or [], all groups

will be visible.Visible groups are identified by name not by their
displayed label.’

62 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

HDDBusyGraph

class libqtile.widget.HDDBusyGraph(**config)
Display HDD busy time graph

Parses /sys/block/<dev>/stat file and extracts overall device IO usage, based on io_ticks’s value. See https:
//www.kernel.org/doc/Documentation/block/stat.txt

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
border_color '215578' ‘Widget border color’
border_width 2 ‘Widget border width’
device 'sda' ‘Block device to display info for’
fill_color '1667EB.3' ‘Fill color for linefill graph’
frequency 1 ‘Update frequency in seconds’
graph_color '18BAEB' ‘Graph color’
line_width 3 ‘Line width’
margin_x 3 ‘Margin X’
margin_y 3 ‘Margin Y’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
samples 100 ‘Count of graph samples.’
start_pos 'bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill' “‘box’, ‘line’, ‘linefill’”

HDDGraph

class libqtile.widget.HDDGraph(**config)
Display HDD free or used space graph

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
border_color '215578' ‘Widget border color’
border_width 2 ‘Widget border width’
fill_color '1667EB.3' ‘Fill color for linefill graph’
frequency 1 ‘Update frequency in seconds’
graph_color '18BAEB' ‘Graph color’
line_width 3 ‘Line width’
margin_x 3 ‘Margin X’
margin_y 3 ‘Margin Y’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
path '/' ‘Partition mount point.’
samples 100 ‘Count of graph samples.’
space_type 'used' ‘free/used’
start_pos 'bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill' “‘box’, ‘line’, ‘linefill’”

1.5. Reference 63

https://www.kernel.org/doc/Documentation/block/stat.txt
https://www.kernel.org/doc/Documentation/block/stat.txt

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

IdleRPG

class libqtile.widget.IdleRPG(**config)
A widget for monitoring and displaying IdleRPG stats.

display idlerpg stats for the player 'pants' on freenode's #idlerpg
widget.IdleRPG(url="http://xethron.lolhosting.net/xml.php?player=pants")

Widget requirements: xmltodict.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
data None ‘Post Data’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format 'IdleRPG:

{online}
TTL: {ttl}'

‘Display format’

headers {} ‘Extra Headers’
json False ‘Not json :)’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
parse None ‘Parse Function’
update_interval600 “Update interval in seconds, if none, the widget updates when-

ever it’s done’.”
url None ‘Url’
user_agent 'Qtile' ‘Set the user agent’
xml True ‘Is XML :)’

Image

class libqtile.widget.Image(length=CALCULATED, width=None, **config)
Display a PNG image on the bar

Supported bar orientations: horizontal and vertical

key default description
background None ‘Widget background color’
filename None “Image filename. Can contain ‘~’”
margin 3 ‘Margin inside the box’
margin_x None “X Margin. Overrides ‘margin’ if set”
margin_y None “Y Margin. Overrides ‘margin’ if set”
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
rotate 0.0 ‘rotate the image in degrees counter-clockwise’
scale True ‘Enable/Disable image scaling’

64 Chapter 1. Getting started

https://pypi.org/project/xmltodict/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

ImapWidget

class libqtile.widget.ImapWidget(**config)
Email IMAP widget

This widget will scan one of your imap email boxes and report the number of unseen messages present. I’ve
configured it to only work with imap with ssl. Your password is obtained from the Gnome Keyring.

Writing your password to the keyring initially is as simple as (changing out <userid> and <password> for your
userid and password):

1) create the file ~/.local/share/python_keyring/keyringrc.cfg with the following contents:

[backend]
default-keyring=keyring.backends.Gnome.Keyring
keyring-path=/home/<userid>/.local/share/keyring/

2) Execute the following python shell script once:

#!/usr/bin/env python3
import keyring
user = <userid>
password = <password>
keyring.set_password('imapwidget', user, password)

mbox names must include the path to the mbox (except for the default INBOX). So, for example if your mailroot
is ~/Maildir, and you want to look at the mailbox at HomeMail/fred, the mbox setting would be: mbox="~/
Maildir/HomeMail/fred". Note the nested sets of quotes! Labels can be whatever you choose, of course.

Widget requirements: keyring.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
label 'INBOX' ‘label for display’
markup True ‘Whether or not to use pango markup’
mbox '"INBOX"' ‘mailbox to fetch’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
server None ‘email server name’
update_interval600 “Update interval in seconds, if none, the widget updates when-

ever it’s done’.”
user None ‘email username’

1.5. Reference 65

https://pypi.org/project/keyring/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

KeyboardKbdd

class libqtile.widget.KeyboardKbdd(**config)
Widget for changing keyboard layouts per window, using kbdd

kbdd should be installed and running, you can get it from: https://github.com/qnikst/kbdd

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
colours None “foreground colour for each layouteither ‘None’ or a list of

colours.example: [‘ffffff’, ‘E6F0AF’]. “
configured_keyboards['us', 'ir'] “your predefined list of keyboard layouts.example: [‘us’, ‘ir’,

‘es’]”
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_interval1 ‘Update interval in seconds.’

KeyboardLayout

class libqtile.widget.KeyboardLayout(**config)
Widget for changing and displaying the current keyboard layout

To use this widget effectively you need to specify keyboard layouts you want to use (using “config-
ured_keyboards”) and bind function “next_keyboard” to specific keys in order to change layouts.

For example:

Key([mod], “space”, lazy.widget[“keyboardlayout”].next_keyboard(), desc=”Next keyboard lay-
out.”),

It requires setxkbmap to be available in the system.

Supported bar orientations: horizontal only

66 Chapter 1. Getting started

https://github.com/qnikst/kbdd

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
configured_keyboards['us'] “A list of predefined keyboard layouts represented as strings.

For example: [‘us’, ‘us colemak’, ‘es’, ‘fr’].”
display_map {} “Custom display of layout. Key should be in format ‘layout

variant’. For example: {‘us’: ‘us ‘, ‘lt sgs’: ‘sgs’, ‘ru phonetic’:
‘ru ‘}”

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
option None “string of setxkbmap option. Ex., ‘com-

pose:menu,grp_led:scroll’”
padding None ‘Padding. Calculated if None.’
update_interval1 ‘Update time in seconds.’

KhalCalendar

class libqtile.widget.KhalCalendar(**config)
Khal calendar widget

This widget will display the next appointment on your Khal calendar in the qtile status bar. Appointments within
the “reminder” time will be highlighted.

Widget requirements: dateutil.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'FFFF33' ‘default foreground color’
lookahead 7 ‘days to look ahead in the calendar’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
reminder_color 'FF0000' ‘color of calendar entries during reminder time’
remindertime 10 ‘reminder time in minutes’
update_interval600 “Update interval in seconds, if none, the widget updates when-

ever it’s done’.”

1.5. Reference 67

https://pypi.org/project/python-dateutil/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

LaunchBar

class libqtile.widget.LaunchBar(progs=None, width=CALCULATED, **config)
A widget that display icons to launch the associated command

Widget requirements: pyxdg.

Parameters

progs : a list of tuples (software_name, command_to_execute, comment), for
example:

('thunderbird', 'thunderbird -safe-mode', 'launch thunderbird in
→˓safe mode')
('logout', 'qshell:self.qtile.cmd_shutdown()', 'logout from qtile')

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
default_icon '/usr/share/

icons/
oxygen/
256x256/
mimetypes/
application-x-executable.
png'

‘Default icon not found’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding 2 ‘Padding between icons’

Maildir

class libqtile.widget.Maildir(**config)
A simple widget showing the number of new mails in maildir mailboxes

Supported bar orientations: horizontal only

68 Chapter 1. Getting started

https://freedesktop.org/wiki/Software/pyxdg/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
empty_color None ‘Display color when no new mail is available’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
hide_when_emptyFalse ‘Whether not to display anything if the subfolder has no new

mail’
maildir_path '~/Mail' ‘path to the Maildir folder’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
nonempty_color None ‘Display color when new mail is available’
padding None ‘Padding. Calculated if None.’
separator ' ' ‘the string to put between the subfolder strings.’
sub_folders [] ‘The subfolders to scan (e.g. [{“path”: “INBOX”, “label”:

“Home mail”}, {“path”: “spam”, “label”: “Home junk”}]’
subfolder_fmt '{label}:

{value}'
‘Display format for one subfolder’

total False ‘Whether or not to sum subfolders into a grand total. The first
label will be used.’

update_interval600 “Update interval in seconds, if none, the widget updates when-
ever it’s done’.”

Memory

class libqtile.widget.Memory(**config)
Displays memory/swap usage

MemUsed: Returns memory in use MemTotal: Returns total amount of memory MemFree: Returns amount
of memory free MemPercent: Returns memory in use as a percentage Buffers: Returns buffer amount Active:
Returns active memory Inactive: Returns inactive memory Shmem: Returns shared memory SwapTotal: Returns
total amount of swap SwapFree: Returns amount of swap free SwapUsed: Returns amount of swap in use
SwapPercent: Returns swap in use as a percentage

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format '{MemUsed}M/

{MemTotal}M'
‘Formatting for field names.’

markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_interval1.0 ‘Update interval for the Memory’

1.5. Reference 69

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

MemoryGraph

class libqtile.widget.MemoryGraph(**config)
Displays a memory usage graph.

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
border_color '215578' ‘Widget border color’
border_width 2 ‘Widget border width’
fill_color '1667EB.3' ‘Fill color for linefill graph’
frequency 1 ‘Update frequency in seconds’
graph_color '18BAEB' ‘Graph color’
line_width 3 ‘Line width’
margin_x 3 ‘Margin X’
margin_y 3 ‘Margin Y’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
samples 100 ‘Count of graph samples.’
start_pos 'bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill' “‘box’, ‘line’, ‘linefill’”

Mirror

class libqtile.widget.Mirror(reflection)
Supported bar orientations: horizontal and vertical

key default description
background None ‘Widget background color’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’

Moc

class libqtile.widget.Moc(**config)
A simple MOC widget.

Show the artist and album of now listening song and allow basic mouse control from the bar:

• toggle pause (or play if stopped) on left click;

• skip forward in playlist on scroll up;

• skip backward in playlist on scroll down.

MOC (http://moc.daper.net) should be installed.

Supported bar orientations: horizontal only

70 Chapter 1. Getting started

https://pypi.org/project/psutil/
http://moc.daper.net

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
max_chars 0 ‘Maximum number of characters to display in widget.’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
noplay_color 'cecece' ‘Text colour when not playing.’
padding None ‘Padding. Calculated if None.’
play_color '00ff00' ‘Text colour when playing.’
update_interval0.5 ‘Update Time in seconds.’

Mpd2

class libqtile.widget.Mpd2(**config)
Mpd2 Object.

Parameters

status_format : format string to display status

For a full list of values, see: MPDClient.status() and MPDClient.currentsong()

https://musicpd.org/doc/protocol/command_reference.html#command_status https:
//musicpd.org/doc/protocol/tags.html

Default:

'{play_status} {artist}/{title} \
[{repeat}{random}{single}{consume}{updating_db}]'

``play_status`` is a string from ``play_states`` dict

Note that the ``time`` property of the song renamed to ``fulltime``
to prevent conflicts with status information during formating.

idle_format : format string to display status when no song is in queue.

Default:

'{play_status} {idle_message} \
[{repeat}{random}{single}{consume}{updating_db}]'

idle_message : text to display instead of song information when MPD is idle. (i.e. no song in
queue)

Default:: “MPD IDLE”

prepare_status : dict of functions to replace values in status with custom characters.

f(status, key, space_element) => str

New functionality allows use of a dictionary of plain strings.

Default:

1.5. Reference 71

https://musicpd.org/doc/protocol/command_reference.html#command_status
https://musicpd.org/doc/protocol/tags.html
https://musicpd.org/doc/protocol/tags.html

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

status_dict = {
'repeat': 'r',
'random': 'z',
'single': '1',
'consume': 'c',
'updating_db': 'U'

}

format_fns : A dict of functions to format the various elements.

‘Tag’ : f(str) => str

Default:: { ‘all’: lambda s: cgi.escape(s) }

N.B. if ‘all’ is present, it is processed on every element of song_info before any other
formatting is done.

mouse_buttons : A dict of mouse button numbers to actions

Widget requirements: python-mpd2_.

.. _python-mpd2: https://pypi.org/project/python-mpd2/

Supported bar orientations: horizontal only

72 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
color_progress None ‘Text color to indicate track progress.’
command <function

default_cmd
at
0x7f7c10616f80>

‘command to be executed by mapped mouse button.’

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format_fns {'all':

<function
<lambda> at
0x7f7c1062a050>}

‘Dictionary of format methods’

host 'localhost' ‘Host of mpd server’
idle_format '{play_status}

{idle_message}[{repeat}{random}{single}{consume}{updating_db}]'
‘format for status when mpd has no playlist.’

idle_message 'MPD IDLE' ‘text to display when mpd is idle.’
idletimeout 5 ‘MPDClient idle command timeout’
keys {'command':

None,
'next': 5,
'previous':
4, 'stop':
3, 'toggle':
1}

‘mouse button mapping. action -> b_num. deprecated.’

markup True ‘Whether or not to use pango markup’
mouse_buttons {} ‘b_num -> action. replaces keys.’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
no_connection 'No

connection'
‘Text when mpd is disconnected’

padding None ‘Padding. Calculated if None.’
password None ‘Password for auth on mpd server’
play_states {'pause':

'', 'play':
'', 'stop':
''}

‘Play state mapping’

port 6600 ‘Port of mpd server’
prepare_status {'consume':

'c',
'random':
'z',
'repeat':
'r',
'single':
'1',
'updating_db':
'U'}

‘characters to show the status of MPD’

space '-' ‘Space keeper’
status_format '{play_status}

{artist}/
{title}
[{repeat}{random}{single}{consume}{updating_db}]'

‘format for displayed song info.’

timeout 30 ‘MPDClient timeout’
update_interval1 ‘Interval of update widget’

1.5. Reference 73

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Mpris2

class libqtile.widget.Mpris2(**config)
An MPRIS 2 widget

A widget which displays the current track/artist of your favorite MPRIS player. It should work with all MPRIS
2 compatible players which implement a reasonably correct version of MPRIS, though I have only tested it with
audacious. This widget scrolls the text if neccessary and information that is displayed is configurable.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
display_metadata['xesam:title',

'xesam:album',

'xesam:artist']

‘Which metadata identifiers to display. See http:
//www.freedesktop.org/wiki/Specifications/mpris-spec/
metadata/#index5h3 for available values’

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
name 'audacious' ‘Name of the MPRIS widget.’
objname 'org.mpris.

MediaPlayer2.
audacious'

‘DBUS MPRIS 2 compatible player identifier- Find it out with
dbus-monitor - Also see: http://specifications.freedesktop.org/
mpris-spec/latest/#Bus-Name-Policy’

padding None ‘Padding. Calculated if None.’
scroll_chars 30 ‘How many chars at once to display.’
scroll_interval0.5 ‘Scroll delay interval.’
scroll_wait_intervals8 ‘Wait x scroll_interval beforescrolling/removing text’
stop_pause_textNone ‘Optional text to display when in the stopped/paused state’

Net

class libqtile.widget.Net(**config)
Displays interface down and up speed

Widget requirements: psutil.

Supported bar orientations: horizontal only

74 Chapter 1. Getting started

http://www.freedesktop.org/wiki/Specifications/mpris-spec/metadata/#index5h3
http://www.freedesktop.org/wiki/Specifications/mpris-spec/metadata/#index5h3
http://www.freedesktop.org/wiki/Specifications/mpris-spec/metadata/#index5h3
http://specifications.freedesktop.org/mpris-spec/latest/#Bus-Name-Policy
http://specifications.freedesktop.org/mpris-spec/latest/#Bus-Name-Policy
https://pypi.org/project/psutil/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format '{interface}:

{down} ↓↑
{up}'

‘Display format of down-/upload speed of given interfaces’

interface None ‘List of interfaces or single NIC as string to monitor, None to
displays all active NICs combined’

markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_interval1 ‘The update interval.’
use_bits False ‘Use bits instead of bytes per second?’

NetGraph

class libqtile.widget.NetGraph(**config)
Display a network usage graph.

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
bandwidth_type 'down' ‘down(load)/up(load)’
border_color '215578' ‘Widget border color’
border_width 2 ‘Widget border width’
fill_color '1667EB.3' ‘Fill color for linefill graph’
frequency 1 ‘Update frequency in seconds’
graph_color '18BAEB' ‘Graph color’
interface 'auto' “Interface to display info for (‘auto’ for detection)”
line_width 3 ‘Line width’
margin_x 3 ‘Margin X’
margin_y 3 ‘Margin Y’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
samples 100 ‘Count of graph samples.’
start_pos 'bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill' “‘box’, ‘line’, ‘linefill’”

1.5. Reference 75

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Notify

class libqtile.widget.Notify(width=CALCULATED, **config)
A notify widget

Supported bar orientations: horizontal only

key default description
audiofile None ‘Audiofile played during notifications’
background None ‘Widget background color’
default_timeoutNone ‘Default timeout (seconds) for notifications’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
foreground_low 'dddddd' ‘Foreground low priority colour’
foreground_urgent'ff0000' ‘Foreground urgent priority colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’

OpenWeather

class libqtile.widget.OpenWeather(**config)
A weather widget, data provided by the OpenWeather API.

Some format options:

• location_city

• location_cityid

• location_country

• location_lat

• location_long

• weather

• weather_details

• units_temperature

• units_wind_speed

• isotime

• humidity

• pressure

• sunrise

• sunset

• temp

• visibility

• wind_speed

76 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

• wind_deg

• wind_direction

• weather_0_icon # See: https://openweathermap.org/weather-conditions; TODO: Use icons.

• main_feels_like

• main_temp_min

• main_temp_max

• clouds_all

Supported bar orientations: horizontal only

1.5. Reference 77

https://openweathermap.org/weather-conditions

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
app_key '7834197c2338888258f8cb94ae14ef49'‘Open Weather access key. A default is provided,

butn for prolonged use obtaining your own is suggested:n
https://home.openweathermap.org/users/sign_up’

background None ‘Widget background color’
cityid None ‘City ID. Can be looked up on e.g.:n

https://openweathermap.org/findn Takes precedence over
location and coordinates.n Note that this is not equal to a
WOEID.’

coordinates None ‘Dictionary containing latitude and longituden Example: coor-
dinates={“longitude”: “77.22”,n “latitude”: “28.67”}’

data None ‘Post Data’
dateformat '%Y-%m-%d ' ‘Format for dates, defaults to ISO.n For details see: https://docs.

python.org/3/library/time.html#time.strftime’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format '{location_city}:

{main_temp}
°{units_temperature}
{humidity}%
{weather_details}'

‘Display format’

headers {} ‘Extra Headers’
json True ‘Is Json?’
language 'en' ‘Language of response. List of languages supported cann be

seen at: https://openweathermap.org/current undern Multilin-
gual support’

location None ‘Name of the city. Country name can be appendedn like cam-
bridge,NZ. Takes precedence over zip-code.’

markup True ‘Whether or not to use pango markup’
metric True ‘True to use metric/C, False to use imperial/F’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
parse None ‘Parse Function’
timeformat '%H:%M' ‘Format for times, defaults to ISO.n For details see: https://docs.

python.org/3/library/time.html#time.strftime’
update_interval600 “Update interval in seconds, if none, the widget updates when-

ever it’s done’.”
url None ‘Url’
user_agent 'Qtile' ‘Set the user agent’
xml False ‘Is XML?’
zip None ‘Zip code (USA) or “zip code,country code” forn other coun-

tries. E.g. 12345,NZ. Takes precedence overn coordinates.’

78 Chapter 1. Getting started

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime
https://openweathermap.org/current
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Pomodoro

class libqtile.widget.Pomodoro(**config)
Pomodoro technique widget

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
color_active '00ff00' ‘Colour then pomodoro is running’
color_break 'ffff00' ‘Colour then it is break time’
color_inactive 'ff0000' ‘Colour then pomodoro is inactive’
fmt '{}' ‘fmt’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
length_long_break15 ‘Length of a long break in minutes’
length_pomodori25 ‘Length of one pomodori in minutes’
length_short_break5 ‘Length of a short break in minutes’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
notification_onTrue ‘Turn notifications on’
num_pomodori 4 ‘Number of pomodori to do in a cycle’
padding None ‘Padding. Calculated if None.’
prefix_active '' ‘Prefix then app is active’
prefix_break 'B ' ‘Prefix during short break’
prefix_inactive'POMODORO' ‘Prefix when app is inactive’
prefix_long_break'LB ' ‘Prefix during long break’
prefix_paused 'PAUSE' ‘Prefix during pause’
update_interval1 ‘Update interval in seconds, if none, the widget updates when-

ever the event loop is idle.’

Prompt

class libqtile.widget.Prompt(name='prompt', **config)
A widget that prompts for user input

Input should be started using the .start_input() method on this class.

Supported bar orientations: horizontal only

1.5. Reference 79

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
bell_style 'audible' “Alert at the begin/end of the command history. Possible values:

‘audible’, ‘visual’ and None.”
cursor True ‘Show a cursor’
cursor_color 'bef098' ‘Color for the cursor and text over it.’
cursorblink 0.5 ‘Cursor blink rate. 0 to disable.’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
ignore_dups_historyFalse “Don’t store duplicates in history”
markup True ‘Whether or not to use pango markup’
max_history 100 ‘Commands to keep in history. 0 for no limit.’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
prompt '{prompt}:

'
‘Text displayed at the prompt’

record_history True ‘Keep a record of executed commands’
visual_bell_color'ff0000' ‘Color for the visual bell (changes prompt background).’
visual_bell_time0.2 ‘Visual bell duration (in seconds).’

PulseVolume

libqtile.widget.PulseVolume
alias of libqtile.widget.import_error.make_error.<locals>.ImportErrorWidget

QuickExit

class libqtile.widget.QuickExit(widget=CALCULATED, **config)
A button of exiting the running qtile easily. When clicked this button, a countdown start. If the button pushed
with in the countdown again, the qtile shutdown.

Supported bar orientations: horizontal only

80 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
countdown_format'[{}

seconds]'
‘This text is showed when counting down.’

countdown_start5 ‘Time to accept the second pushing.’
default_text '[shutdown

]'
‘A text displayed as a button’

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
timer_interval 1 ‘A countdown interval.’

Sep

class libqtile.widget.Sep(height_percent=None, **config)
A visible widget separator

Supported bar orientations: horizontal and vertical

key default description
background None ‘Widget background color’
foreground '888888' ‘Separator line colour.’
linewidth 1 ‘Width of separator line.’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding 2 ‘Padding on either side of separator.’
size_percent 80 ‘Size as a percentage of bar size (0-100).’

She

class libqtile.widget.She(**config)
Widget to display the Super Hybrid Engine status

Can display either the mode or CPU speed on eeepc computers.

Supported bar orientations: horizontal only

1.5. Reference 81

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
device '/sys/

devices/
platform/
eeepc/cpufv'

‘sys path to cpufv’

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format 'speed' ‘Type of info to display “speed” or “name”’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_interval0.5 ‘Update Time in seconds.’

Spacer

class libqtile.widget.Spacer(length=STRETCH, width=None, **config)
Just an empty space on the bar

Often used with length equal to bar.STRETCH to push bar widgets to the right or bottom edge of the screen.

Parameters

length : Length of the widget. Can be either bar.STRETCH or a length in pixels.

width : DEPRECATED, same as length.

Supported bar orientations: horizontal and vertical

key default description
background None ‘Widget background color’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’

StockTicker

class libqtile.widget.StockTicker(**config)
A stock ticker widget, based on the alphavantage API. Users must acquire an API key from https://www.
alphavantage.co/support/#api-key

The widget defaults to the TIME_SERIES_INTRADAY API function (i.e. stock symbols), but arbitrary Alpha
Vantage API queries can be made by passing extra arguments to the constructor.

Display AMZN
widget.StockTicker(apikey=..., symbol="AMZN")

Display BTC
widget.StockTicker(apikey=..., function="DIGITAL_CURRENCY_INTRADAY", symbol="BTC",
→˓ market="USD")

Supported bar orientations: horizontal only

82 Chapter 1. Getting started

https://www.alphavantage.co/support/#api-key
https://www.alphavantage.co/support/#api-key

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
data None ‘Post Data’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
function 'TIME_SERIES_INTRADAY'‘The default API function to query’
headers {} ‘Extra Headers’
interval '1min' ‘The default latency to query’
json True ‘Is Json?’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
parse None ‘Parse Function’
update_interval600 “Update interval in seconds, if none, the widget updates when-

ever it’s done’.”
url None ‘Url’
user_agent 'Qtile' ‘Set the user agent’
xml False ‘Is XML?’

SwapGraph

class libqtile.widget.SwapGraph(**config)
Display a swap info graph.

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
border_color '215578' ‘Widget border color’
border_width 2 ‘Widget border width’
fill_color '1667EB.3' ‘Fill color for linefill graph’
frequency 1 ‘Update frequency in seconds’
graph_color '18BAEB' ‘Graph color’
line_width 3 ‘Line width’
margin_x 3 ‘Margin X’
margin_y 3 ‘Margin Y’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
samples 100 ‘Count of graph samples.’
start_pos 'bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill' “‘box’, ‘line’, ‘linefill’”

1.5. Reference 83

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Systray

class libqtile.widget.Systray(**config)
A widget that manages system tray

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
icon_size 20 ‘Icon width’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding 5 ‘Padding between icons’

TaskList

class libqtile.widget.TaskList(**config)
Displays the icon and name of each window in the current group

Contrary to WindowTabs this is an interactive widget. The window that currently has focus is highlighted.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
border '215578' ‘Border colour’
borderwidth 2 ‘Current group border width’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
highlight_method'border' “Method of highlighting (one of ‘border’ or ‘block’) Uses

*_border color settings”
icon_size None ‘Icon size. (Calculated if set to None. Icons are hidden if set to

0.)’
margin 3 ‘Margin inside the box’
margin_x None “X Margin. Overrides ‘margin’ if set”
margin_y None “Y Margin. Overrides ‘margin’ if set”
markup_floatingNone ‘Text markup of the floating window state. Supports pan-

gomarkup with markup=True.e.g., “{}” or “<span under-
line=”low”>{}”’

markup_focused None ‘Text markup of the focused window state. Supports pan-
gomarkup with markup=True.e.g., “{}” or “<span under-
line=”low”>{}”’

markup_maximizedNone ‘Text markup of the maximized window state. Supports
pangomarkup with markup=True.e.g., “{}” or “<span under-
line=”low”>{}”’

markup_minimizedNone ‘Text markup of the minimized window state. Supports
pangomarkup with markup=True.e.g., “{}” or “<span under-
line=”low”>{}”’

markup_normal None ‘Text markup of the normal window state. Supports pan-
gomarkup with markup=True.e.g., “{}” or “<span under-
line=”low”>{}”’

continues on next page

84 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Table 2 – continued from previous page
key default description
max_title_widthNone ‘Max size in pixels of task title.(if set to None, as much as avail-

able.)’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding 3 ‘Padding inside the box’
padding_x None “X Padding. Overrides ‘padding’ if set”
padding_y None “Y Padding. Overrides ‘padding’ if set”
rounded True ‘To round or not to round borders’
spacing None ‘Spacing between tasks.(if set to None, will be equal to mar-

gin_x)’
title_width_methodNone “Method to compute the width of task title. (None, ‘uni-

form’.)Defaults to None, the normal behaviour.”
txt_floating 'V ' ‘Text representation of the floating window state. e.g., “V ” or “

“’
txt_maximized '[] ' ‘Text representation of the maximized window state. e.g., “[] ”

or “ “’
txt_minimized '_ ' ‘Text representation of the minimized window state. e.g., “_ ”

or “ “’
unfocused_borderNone “Border color for unfocused windows. Affects only hight-

light_method ‘border’ and ‘block’. Defaults to None, which
means no special color.”

urgent_alert_method'border' “Method for alerting you of WM urgent hints (one of ‘border’
or ‘text’)”

urgent_border 'FF0000' ‘Urgent border color’

TextBox

class libqtile.widget.TextBox(text=' ', width=CALCULATED, **config)
A flexible textbox that can be updated from bound keys, scripts, and qshell.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Text font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font pixel size. Calculated if None.’
foreground '#ffffff' ‘Foreground colour.’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding left and right. Calculated if None.’

1.5. Reference 85

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

ThermalSensor

class libqtile.widget.ThermalSensor(**config)
Widget to display temperature sensor information

For using the thermal sensor widget you need to have lm-sensors installed. You can get a list of the tag_sensors
executing “sensors” in your terminal. Then you can choose which you want, otherwise it will display the first
available.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
foreground_alert'ff0000' ‘Foreground colour alert’
markup True ‘Whether or not to use pango markup’
metric True ‘True to use metric/C, False to use imperial/F’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
show_tag False ‘Show tag sensor’
tag_sensor None ‘Tag of the temperature sensor. For example: “temp1” or “Core

0”’
threshold 70 ‘If the current temperature value is above, then change to fore-

ground_alert colour’
update_interval2 ‘Update interval in seconds’

Volume

class libqtile.widget.Volume(**config)
Widget that display and change volume

By default, this widget uses amixer to get and set the volume so users will need to make sure this is installed.
Alternatively, users may set the relevant parameters for the widget to use a different application.

If theme_path is set it draw widget as icons.

Supported bar orientations: horizontal only

86 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
cardid None ‘Card Id’
channel 'Master' ‘Channel’
device 'default' ‘Device Name’
emoji False ‘Use emoji to display volume states, only if theme_path is

not set.The specified font needs to contain the correct unicode
characters.’

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
get_volume_commandNone ‘Command to get the current volume’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
mute_command None ‘Mute command’
padding 3 ‘Padding left and right. Calculated if None.’
step 2 ‘Volume change for up an down commands in per-

centage.Only used if volume_up_command and
volume_down_command are not set.’

theme_path None ‘Path of the icons’
update_interval0.2 ‘Update time in seconds.’
volume_app None ‘App to control volume’
volume_down_commandNone ‘Volume down command’
volume_up_commandNone ‘Volume up command’

Wallpaper

class libqtile.widget.Wallpaper(**config)
Supported bar orientations: horizontal only

1.5. Reference 87

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
directory '~/Pictures/

wallpapers/'
‘Wallpaper Directory’

fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
label None ‘Use a fixed label instead of image name.’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
option 'fill' “How to fit the wallpaper when wallpaper_command isNone.

None, ‘fill’ or ‘stretch’.”
padding None ‘Padding. Calculated if None.’
random_selectionFalse ‘If set, use random initial wallpaper and randomly cycle through

the wallpapers.’
wallpaper None ‘Wallpaper’
wallpaper_command['feh',

'--bg-fill']
‘Wallpaper command. If None, thewallpaper will be painted
without the use of a helper.’

WidgetBox

class libqtile.widget.WidgetBox(widgets=[], **config)
A widget to declutter your bar.

WidgetBox is a widget that hides widgets by default but shows them when the box is opened.

Widgets that are hidden will still update etc. as if they were on the main bar.

Button clicks are passed to widgets when they are visible so callbacks will work.

Widgets in the box also remain accessible via command interfaces.

Widgets can only be added to the box via the configuration file. The widget is configured by adding widgets to
the “widgets” parameter as follows:

widget.WidgetBox(widgets=[
widget.TextBox(text="This widget is in the box"),
widget.Memory()
]

),

Supported bar orientations: horizontal only

88 Chapter 1. Getting started

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
close_button_location'left' “Location of close button when box open (‘left’ or ‘right’)”
font 'sans' ‘Text font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font pixel size. Calculated if None.’
foreground '#ffffff' ‘Foreground colour.’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
text_closed '[<]' ‘Text when box is closed’
text_open '[>]' ‘Text when box is open’

WindowCount

class libqtile.widget.WindowCount(text=' ', width=CALCULATED, **config)
A simple widget to show the number of windows in the current group.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Text font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font pixel size. Calculated if None.’
foreground '#ffffff' ‘Foreground colour.’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding left and right. Calculated if None.’
show_zero False ‘Show window count when no windows’
text_format '{num}' ‘Format for message’

WindowName

class libqtile.widget.WindowName(width=STRETCH, **config)
Displays the name of the window that currently has focus

Supported bar orientations: horizontal only

1.5. Reference 89

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
empty_group_string' ' ‘string to display when no windows are focused on current

group’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
for_current_screenFalse ‘instead of this bars screen use currently active screen’
foreground 'ffffff' ‘Foreground colour’
format '{state}{name}'‘format of the text’
markup True ‘Whether or not to use pango markup’
max_chars 0 ‘max chars before truncating with ellipsis’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’

WindowTabs

class libqtile.widget.WindowTabs(**config)
Displays the name of each window in the current group. Contrary to TaskList this is not an interactive widget.
The window that currently has focus is highlighted.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
selected ('', '</

b>')
‘Selected task indicator’

separator ' | ' ‘Task separator text.’

Wlan

class libqtile.widget.Wlan(**config)
Displays Wifi SSID and quality.

Widget requirements: iwlib.

Supported bar orientations: horizontal only

90 Chapter 1. Getting started

https://pypi.org/project/iwlib/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘Widget background color’
disconnected_message'Disconnected' ‘String to show when the wlan is diconnected.’
fmt '{}' ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'ffffff' ‘Foreground colour’
format '{essid}

{quality}/
70'

‘Display format. For percents you can use “{essid} {per-
cent:2.0%}”’

interface 'wlan0' ‘The interface to monitor’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_interval1 ‘The update interval.’

1.5.4 Built-in Extensions

CommandSet

class libqtile.extension.CommandSet(**config)
Give list of commands to be executed in dmenu style.

ex. manage mocp deamon:

Key([mod], 'm', lazy.run_extension(extension.CommandSet(
commands={

'play/pause': '[$(mocp -i | wc -l) -lt 2] && mocp -p || mocp -G',
'next': 'mocp -f',
'previous': 'mocp -r',
'quit': 'mocp -x',
'open': 'urxvt -e mocp',
'shuffle': 'mocp -t shuffle',
'repeat': 'mocp -t repeat',
},

pre_commands=['[$(mocp -i | wc -l) -lt 1] && mocp -S'],

**Theme.dmenu))),

1.5. Reference 91

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘defines the normal background color’
command None ‘the command to be launched (string or list with arguments)’
commands None ‘dictionary of commands where key is runable command’
dmenu_bottom False ‘dmenu appears at the bottom of the screen’
dmenu_command 'dmenu' ‘the dmenu command to be launched’
dmenu_font None “override the default ‘font’ and ‘fontsize’ options for dmenu”
dmenu_height None ‘defines the height (only supported by some dmenu forks)’
dmenu_ignorecaseFalse ‘dmenu matches menu items case insensitively’
dmenu_lines None ‘dmenu lists items vertically, with the given number of lines’
dmenu_prompt None ‘defines the prompt to be displayed to the left of the input field’
font 'sans' ‘defines the font name to be used’
fontsize None ‘defines the font size to be used’
foreground None ‘defines the normal foreground color’
pre_commands None ‘list of commands to be executed before getting dmenu answer’
selected_backgroundNone ‘defines the selected background color’
selected_foregroundNone ‘defines the selected foreground color’

Dmenu

class libqtile.extension.Dmenu(**config)
Python wrapper for dmenu http://tools.suckless.org/dmenu/

key default description
background None ‘defines the normal background color’
command None ‘the command to be launched (string or list with arguments)’
dmenu_bottom False ‘dmenu appears at the bottom of the screen’
dmenu_command 'dmenu' ‘the dmenu command to be launched’
dmenu_font None “override the default ‘font’ and ‘fontsize’ options for dmenu”
dmenu_height None ‘defines the height (only supported by some dmenu forks)’
dmenu_ignorecaseFalse ‘dmenu matches menu items case insensitively’
dmenu_lines None ‘dmenu lists items vertically, with the given number of lines’
dmenu_prompt None ‘defines the prompt to be displayed to the left of the input field’
font 'sans' ‘defines the font name to be used’
fontsize None ‘defines the font size to be used’
foreground None ‘defines the normal foreground color’
selected_backgroundNone ‘defines the selected background color’
selected_foregroundNone ‘defines the selected foreground color’

DmenuRun

class libqtile.extension.DmenuRun(**config)
Special case to run applications.

config.py should have something like:

from libqtile import extension
keys = [

Key(['mod4'], 'r', lazy.run_extension(extension.DmenuRun(
dmenu_prompt=">",

(continues on next page)

92 Chapter 1. Getting started

http://tools.suckless.org/dmenu/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

dmenu_font="Andika-8",
background="#15181a",
foreground="#00ff00",
selected_background="#079822",
selected_foreground="#fff",
dmenu_height=24, # Only supported by some dmenu forks

))),
]

key default description
background None ‘defines the normal background color’
command None ‘the command to be launched (string or list with arguments)’
dmenu_bottom False ‘dmenu appears at the bottom of the screen’
dmenu_command 'dmenu_run' ‘the dmenu command to be launched’
dmenu_font None “override the default ‘font’ and ‘fontsize’ options for dmenu”
dmenu_height None ‘defines the height (only supported by some dmenu forks)’
dmenu_ignorecaseFalse ‘dmenu matches menu items case insensitively’
dmenu_lines None ‘dmenu lists items vertically, with the given number of lines’
dmenu_prompt None ‘defines the prompt to be displayed to the left of the input field’
font 'sans' ‘defines the font name to be used’
fontsize None ‘defines the font size to be used’
foreground None ‘defines the normal foreground color’
selected_backgroundNone ‘defines the selected background color’
selected_foregroundNone ‘defines the selected foreground color’

J4DmenuDesktop

class libqtile.extension.J4DmenuDesktop(**config)
Python wrapper for j4-dmenu-desktop https://github.com/enkore/j4-dmenu-desktop

1.5. Reference 93

https://github.com/enkore/j4-dmenu-desktop

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
background None ‘defines the normal background color’
command None ‘the command to be launched (string or list with arguments)’
dmenu_bottom False ‘dmenu appears at the bottom of the screen’
dmenu_command 'dmenu' ‘the dmenu command to be launched’
dmenu_font None “override the default ‘font’ and ‘fontsize’ options for dmenu”
dmenu_height None ‘defines the height (only supported by some dmenu forks)’
dmenu_ignorecaseFalse ‘dmenu matches menu items case insensitively’
dmenu_lines None ‘dmenu lists items vertically, with the given number of lines’
dmenu_prompt None ‘defines the prompt to be displayed to the left of the input field’
font 'sans' ‘defines the font name to be used’
fontsize None ‘defines the font size to be used’
foreground None ‘defines the normal foreground color’
j4dmenu_command'j4-dmenu-desktop'‘the dmenu command to be launched’
j4dmenu_display_binaryFalse ‘display binary name after each entry’
j4dmenu_genericTrue ‘include the generic name of desktop entries’
j4dmenu_terminalNone ‘terminal emulator used to start terminal apps’
j4dmenu_usage_logNone ‘file used to sort items by usage frequency’
j4dmenu_use_xdg_deFalse ‘read $XDG_CURRENT_DESKTOP to determine the desktop

environment’
selected_backgroundNone ‘defines the selected background color’
selected_foregroundNone ‘defines the selected foreground color’

RunCommand

class libqtile.extension.RunCommand(**config)
Run an arbitrary command.

Mostly useful as a superclass for more specific extensions that need to interact with the qtile object.

Also consider simply using lazy.spawn() or writing a client.

key default description
background None ‘defines the normal background color’
command None ‘the command to be launched (string or list with arguments)’
font 'sans' ‘defines the font name to be used’
fontsize None ‘defines the font size to be used’
foreground None ‘defines the normal foreground color’
selected_backgroundNone ‘defines the selected background color’
selected_foregroundNone ‘defines the selected foreground color’

WindowList

class libqtile.extension.WindowList(**config)
Give vertical list of all open windows in dmenu. Switch to selected.

94 Chapter 1. Getting started

http://docs.qtile.org/en/latest/manual/commands/scripting.html

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

key default description
all_groups True ‘If True, list windows from all groups; otherwise only from the

current group’
background None ‘defines the normal background color’
command None ‘the command to be launched (string or list with arguments)’
dmenu_bottom False ‘dmenu appears at the bottom of the screen’
dmenu_command 'dmenu' ‘the dmenu command to be launched’
dmenu_font None “override the default ‘font’ and ‘fontsize’ options for dmenu”
dmenu_height None ‘defines the height (only supported by some dmenu forks)’
dmenu_ignorecaseFalse ‘dmenu matches menu items case insensitively’
dmenu_lines '80' ‘Give lines vertically. Set to None get inline’
dmenu_prompt None ‘defines the prompt to be displayed to the left of the input field’
font 'sans' ‘defines the font name to be used’
fontsize None ‘defines the font size to be used’
foreground None ‘defines the normal foreground color’
item_format '{group}.

{id}:
{window}'

‘the format for the menu items’

selected_backgroundNone ‘defines the selected background color’
selected_foregroundNone ‘defines the selected foreground color’

1.5. Reference 95

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

96 Chapter 1. Getting started

CHAPTER

TWO

ADVANCED SCRIPTING

2.1 Scripting

2.1.1 Client-Server Scripting Model

Qtile has a client-server control model - the main Qtile instance listens on a named pipe, over which marshalled
command calls and response data is passed. This allows Qtile to be controlled fully from external scripts. Remote in-
teraction occurs through an instance of the libqtile.command.interface.IPCCommandInterface class.
This class establishes a connection to the currently running instance of Qtile. A libqtile.command.client.
CommandClient can use this connection to dispatch commands to the running instance. Commands then appear
as methods with the appropriate signature on the CommandClient object. The object hierarchy is described in the
Commands API section of this manual. Full command documentation is available through the Qtile Shell.

2.1.2 Example

Below is a very minimal example script that inspects the current Qtile instance, and returns the integer offset of the
current screen.

from libqtile.command.client import CommandClient
c = CommandClient()
print(c.screen.info()["index"])

2.2 Commands API

Qtile’s command API is based on a graph of objects, where each object has a set of associated commands. The graph
and object commands are used in a number of different places:

• Commands can be bound to keys in the Qtile configuration file.

• Commands can be called through qtile shell, the Qtile shell.

• The qsh can also be hooked into a Jupyter kernel called iqshell.

• Commands can be called from a script to interact with Qtile from Python.

If the explanation below seems a bit complex, please take a moment to explore the API using the qtile shell
command shell. Command lists and detailed documentation can be accessed from its built-in help command.

97

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

2.2.1 Introduction: Object Graph

The objects in Qtile’s object graph come in seven flavours, matching the seven basic components of the window
manager: layouts, windows, groups, bars, widgets, screens, and a special root node. Objects are
addressed by a path specification that starts at the root, and follows the edges of the graph. This is what the graph
looks like:

root

bar

group

layout

screen

widget

window

Each arrow can be read as “holds a reference to”. So, we can see that a widget object holds a reference to objects of
type bar, screen and group. Lets start with some simple examples of how the addressing works. Which particular
objects we hold reference to depends on the context - for instance, widgets hold a reference to the screen that they
appear on, and the bar they are attached to.

Lets look at an example, starting at the root node. The following script runs the status command on the root node,
which, in this case, is represented by the InteractiveCommandClient object:

from libqtile.command.client import InteractiveCommandClient
c = InteractiveCommandClient()

(continues on next page)

98 Chapter 2. Advanced scripting

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

(continued from previous page)

print(c.status())

The InteractiveCommandClient is a class that allows us to traverse the command graph using attributes to
select child nodes or commands. In this example, we have resolved the status() command on the root object. The
interactive command client will automatically find and connect to a running Qtile instance, and which it will use to
dispatch the call and print out the return.

An alternative is to use the CommandClient, which allows for a more precise resolution of command graph objects,
but is not as easy to interact with from a REPL:

from libqtile.command.client import CommandClient
c = CommandClient()
print(c.call("status")())

Like the interactive client, the command client will automatically connect to a running Qtile instance. Here, we first
resolve the status() command with the .call("status"), which simply located the function, then we can
invoke the call with no arguments.

For the rest of this example, we will use the interactive command client. From the graph, we can see that the root node
holds a reference to group nodes. We can access the “info” command on the current group like so:

c.group.info()

To access a specific group, regardless of whether or not it is current, we use the Python mapping lookup syntax. This
command sends group “b” to screen 1 (by the libqtile.config.Group.to_screen() method):

c.group["b"].to_screen(1)

In different contexts, it is possible to access a default object, where in other contexts a key is required. From the root
of the graph, the current group, layout, screen and window can be accessed by simply leaving the key specifier
out. The key specifier is mandatory for widget and bar nodes.

With this context, we can now drill down deeper in the graph, following the edges in the graphic above. To access the
screen currently displaying group “b”, we can do this:

c.group["b"].screen.info()

Be aware, however, that group “b” might not currently be displayed. In that case, it has no associated screen, the path
resolves to a non-existent node, and we get an exception:

libqtile.command.CommandError: No object screen in path 'group['b'].screen'

The graph is not a tree, since it can contain cycles. This path (redundantly) specifies the group belonging to the screen
that belongs to group “b”:

c.group["b"].screen.group

This amout of connectivity makes it easy to reach out from a given object when callbacks and events fire on that object
to related objects.

2.2. Commands API 99

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

2.2.2 Keys

The key specifier for the various object types are as follows:

Object Key Optional? Example
bar “top”, “bottom” No

c.screen.bar[“bottom”]

group Name string Yes

c.group[“one”]
c.group

layout Integer index Yes

c.layout[2]
c.layout

screen Integer index Yes

c.screen[1]
c.screen

widget Widget name No

c.widget[“textbox”]

window Integer window ID Yes

c.window[123456]
c.window

2.2.3 Digging Deeper: Command Objects

If you just want to script your Qtile window manager the above information, in addition to the documentation on the
various scripting commands should be enough to get started. To develop the Qtile manager itself, we can dig into how
Qtile represents these objects, which will lead to the way the commands are dispatched.

All of the configured objects setup by Qtile are CommandObject subclasses. These objects are so named because
we can issue commands against them using the command scripting API. Looking through the code, the commands that
are exposed are commands named cmd_*. When writing custom layouts, widgets, or any other object, you can add
your own custom cmd_ functions and they will be callable using the standard command infrastructure. An available
command can be extracted by calling .command() with the name of the command.

In addition to having a set of associated commands, each command object also has a collection of items associated
with it. This is what forms the graph that is shown above. For a given object type, the items() method returns all
of the names of the associated objects of that type and whether or not there is a defaultable value. For example, from
the root, .items("group") returns the name of all of the groups and that there is a default value, the currently
focused group.

To navigate from one command object to the next, the .select() method is used. This method resolves a re-
quested object from the command graph by iteratively selecting objects. A selector like [("group", "b"),
("screen", None)] would be to first resolve group “b”, then the screen associated to the group.

100 Chapter 2. Advanced scripting

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

2.2.4 The Command Graph

In order to help in specifying command objects, there is the abstract command graph structure. The command graph
structure allows us to address any valid command object and issue any command against it without needing to have
any Qtile instance running or have anything to resolve the objects to. This is particularly useful when constructing lazy
calls, where the Qtile instance does not exist to specify the path that will be resolved when the command is executed.
The only limitation of traversing the command graph is that it must follow the allowed edges specified in the first
section above.

Every object in the command graph is represented by a CommandGraphNode. Any call can be resolved from a
given node. In addition, each node knows about all of the children objects that can be reached from it and have
the ability to .navigate() to the other nodes in the command graph. Each of the object types are represented
as CommandGraphObject types and the root node of the graph, the CommandGraphRoot reresents the Qtile
instance. When a call is performed on an object, it returns a CommandGraphCall. Each call will know its own
name as well as be able to resolve the path through the command graph to be able to find itself.

Note that the command graph itself can standalone, there is no other functionality within Qtile that it relies on. While
we could have started here and built up, it is helpful to understand the objects that the graph is meant to represent, as
the graph is just a representation of a traversal of the real objects in a running Qtile window manager. In order to tie
the running Qtile instance to the abstract command graph, we move on to the command interface.

2.2.5 Executing graph commands: Command Interface

The CommandInterface is what lets us take an abstract call on the command graph and resolve it against a
running command object. Put another way, this is what takes the graph traversal .group["b"].screen.info()
and executes the info() command against the addressed screen object. Additional functionality can be used to
check that a given traversal resolves to actual objcets and that the requested command actually exists. Note that by
construction of the command graph, the traversals here must be feasible, even if they cannot be resolved for a given
configuration state. For example, it is possible to check the screen assoctiated to a group, even though the group may
not be on a screen, but it is not possible to check the widget associated to a group.

The simplest form of the command interface is the QtileCommandInterface, which can take an in-process
Qtile instance as the root CommandObject and execute requested commands. This is typically how we run the
unit tests for Qtile.

The other primary example of this is the IPCCommandInterface which is able to then route all calls through an
IPC client connected to a running Qtile instance. In this case, the command graph call can be constructed on the client
side without having to dispatch to Qtile and once the call is constructed and deemed valid, the call can be executed.

In both of these cases, executing a command on a command interface will return the result of executing the command
on a running Qtile instance. To support lazy execution, the LazyCommandInterface instead returns a LazyCall
which is able to be resolved later by the running Qtile instance when it is configured to fire.

2.2.6 Tying it together: Command Client

So far, we have our running Command Objects and the Command Interface to dispatch commands against these objects
as well as the Command Graph structure itself which encodes how to traverse the connections between the objects. The
final component which ties everything together is the Command Client, which allows us to navigate through the graph
to resolve objects, find their associated commands, and execute the commands against the held command interface.

The idea of the command client is that it is created with a reference into the command graph and a command interface.
All navigation can be done against the command graph, and traversal is done by creating a new command client
starting from the new node. When a command is executed against a node, that command is dispatched to the held
command interface. The key decision here is how to perform the traversal. The command client exists in two different
flavors: the standard ComandClient which is useful for handling more programatic traversal of the graph, calling

2.2. Commands API 101

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

methods to traverse the graph, and the InteractiveCommandClient which behaves more like a standard Python
object, traversing by accessing properties and performing key lookups.

Returning to our examples above, we now have the full context to see what is going on when we call:

from libqtile.command.client import CommandClient
c = CommandClient()
print(c.call("status")())
from libqtile.command.client import InteractiveCommandClient
c = InteractiveCommandClient()
print(c.status())

In both cases, the command clients are constructed with the default command interface, which sets up an IPC con-
nection to the running Qtile instance, and starts the client at the graph root. When we call c.call("status")
or c.status, we navigate the command client to the status command on the root graph object. When these are
invoked, the commands graph calls are dispatched via the IPC command interface and the results then sent back and
printed on the local command line.

The power that can be realized by separating out the traversal and resolution of objects in the command graph
from actually invoking or looking up any objects within the graph can be seen in the lazy module. By creating
a lazy evaluated command client, we can expose the graph traversal and object resolution functionality via the same
InteractiveCommandClient that is used to perform live command execution in the Qtile prompt.

2.3 Scripting Commands

Here is documented some of the commands available on objects in the command tree when running qshell or scripting
commands to qtile. Note that this is an incomplete list, some objects, such as layouts and widgets, may implement
their own set of commands beyond those given here.

2.3.1 Qtile

class libqtile.core.manager.Qtile(kore, config, no_spawn=False, state=None, socket_path:
Optional[str] = None)

This object is the root of the command graph

cmd_add_rule(match_args, rule_args, min_priorty=False)
Add a dgroup rule, returns rule_id needed to remove it

Parameters

match_args : config.Match arguments

rule_args : config.Rule arguments

min_priorty : If the rule is added with minimum priority (last) (default: False)

cmd_addgroup(group, label=None, layout=None, layouts=None)
Add a group with the given name

cmd_commands()→ List[str]
Returns a list of possible commands for this object

Used by __qsh__ for command completion and online help

cmd_critical()
Set log level to CRITICAL

102 Chapter 2. Advanced scripting

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

cmd_debug()
Set log level to DEBUG

cmd_delgroup(group)
Delete a group with the given name

cmd_display_kb(*args)
Display table of key bindings

cmd_doc(name)→ str
Returns the documentation for a specified command name

Used by __qsh__ to provide online help.

cmd_error()
Set log level to ERROR

cmd_eval(code: str)→ Tuple[bool, Optional[str]]
Evaluates code in the same context as this function

Return value is tuple (success, result), success being a boolean and result being a string representing the
return value of eval, or None if exec was used instead.

cmd_findwindow(prompt='window', widget='prompt')
Launch prompt widget to find a window of the given name

Parameters

prompt : Text with which to prompt user (default: “window”)

widget : Name of the prompt widget (default: “prompt”)

cmd_function(function, *args, **kwargs)→ None
Call a function with current object as argument

cmd_get_state()
Get pickled state for restarting qtile

cmd_get_test_data()
Returns any content arbitrarily set in the self.test_data attribute. Useful in tests.

cmd_groups()
Return a dictionary containing information for all groups

Examples

groups()

cmd_hide_show_bar(position='all')
Toggle visibility of a given bar

Parameters

position : one of: “top”, “bottom”, “left”, “right”, or “all” (default: “all”)

cmd_info()
Set log level to INFO

cmd_internal_windows()
Return info for each internal window (bars, for example)

cmd_items(name)→ Tuple[bool, List[str]]
Returns a list of contained items for the specified name

2.3. Scripting Commands 103

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Used by __qsh__ to allow navigation of the object graph.

cmd_list_widgets()
List of all addressible widget names

cmd_loglevel()

cmd_loglevelname()

cmd_next_layout(group=None)
Switch to the next layout.

Parameters

group : Group name. If not specified, the current group is assumed

cmd_next_screen()
Move to next screen

cmd_next_urgent()
Focus next window with urgent hint

cmd_pause()
Drops into pdb

cmd_prev_layout(group=None)
Switch to the previous layout.

Parameters

group : Group name. If not specified, the current group is assumed

cmd_prev_screen()
Move to the previous screen

cmd_qtile_info()
Returns a dictionary of info on the Qtile instance

cmd_qtilecmd(prompt='command', widget='prompt', messenger='xmessage')→ None
Execute a Qtile command using the client syntax

Tab completion aids navigation of the command tree

Parameters

prompt : Text to display at the prompt (default: “command: “)

widget : Name of the prompt widget (default: “prompt”)

messenger : Command to display output, set this to None to disable (default: “xmessage”)

cmd_remove_rule(rule_id)
Remove a dgroup rule by rule_id

cmd_restart()
Restart qtile

cmd_run_extension(extension)
Run extensions

cmd_screens()
Return a list of dictionaries providing information on all screens

cmd_shutdown()
Quit Qtile

104 Chapter 2. Advanced scripting

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

cmd_simulate_keypress(modifiers, key)
Simulates a keypress on the focused window.

Parameters

modifiers : A list of modifier specification strings. Modifiers can be one of “shift”, “lock”,
“control” and “mod1” - “mod5”.

key : Key specification.

Examples

simulate_keypress([“control”, “mod2”], “k”)

cmd_spawn(cmd, shell=False)
Run cmd, in a shell or not (default).

cmd may be a string or a list (similar to subprocess.Popen).

Examples

spawn(“firefox”)

spawn([“xterm”, “-T”, “Temporary terminal”])

cmd_spawncmd(prompt='spawn', widget='prompt', command='%s', complete='cmd', shell=True)
Spawn a command using a prompt widget, with tab-completion.

Parameters

prompt : Text with which to prompt user (default: “spawn: “).

widget : Name of the prompt widget (default: “prompt”).

command : command template (default: “%s”).

complete : Tab completion function (default: “cmd”)

cmd_status()
Return “OK” if Qtile is running

cmd_switch_groups(groupa, groupb)
Switch position of groupa to groupb

cmd_switchgroup(prompt='group', widget='prompt')
Launch prompt widget to switch to a given group to the current screen

Parameters

prompt : Text with which to prompt user (default: “group”)

widget : Name of the prompt widget (default: “prompt”)

cmd_sync()
Sync the X display. Should only be used for development

cmd_to_layout_index(index, group=None)
Switch to the layout with the given index in self.layouts.

Parameters

index : Index of the layout in the list of layouts.

group : Group name. If not specified, the current group is assumed.

2.3. Scripting Commands 105

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

cmd_to_screen(n)
Warp focus to screen n, where n is a 0-based screen number

Examples

to_screen(0)

cmd_togroup(prompt='group', widget='prompt')
Launch prompt widget to move current window to a given group

Parameters

prompt : Text with which to prompt user (default: “group”)

widget : Name of the prompt widget (default: “prompt”)

cmd_tracemalloc_dump()
Dump tracemalloc snapshot

cmd_tracemalloc_toggle()
Toggle tracemalloc status

Running tracemalloc is required for qtile top

cmd_validate_config()

cmd_warning()
Set log level to WARNING

cmd_windows()
Return info for each client window

2.3.2 Bar

class libqtile.bar.Bar(widgets, size, **config)
A bar, which can contain widgets

Parameters

widgets : A list of widget objects.

size : The “thickness” of the bar, i.e. the height of a horizontal bar, or the width of a vertical
bar.

key default description
background '#000000' ‘Background colour.’
margin 0 ‘Space around bar as int or list of ints [N E S W].’
opacity 1 ‘Bar window opacity.’

cmd_commands()→ List[str]
Returns a list of possible commands for this object

Used by __qsh__ for command completion and online help

cmd_doc(name)→ str
Returns the documentation for a specified command name

Used by __qsh__ to provide online help.

106 Chapter 2. Advanced scripting

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

cmd_eval(code: str)→ Tuple[bool, Optional[str]]
Evaluates code in the same context as this function

Return value is tuple (success, result), success being a boolean and result being a string representing the
return value of eval, or None if exec was used instead.

cmd_fake_button_press(screen, position, x, y, button=1)
Fake a mouse-button-press on the bar. Co-ordinates are relative to the top-left corner of the bar.

:screen The integer screen offset :position One of “top”, “bottom”, “left”, or “right”

cmd_function(function, *args, **kwargs)→ None
Call a function with current object as argument

cmd_info()
Info for this object.

cmd_items(name)→ Tuple[bool, List[str]]
Returns a list of contained items for the specified name

Used by __qsh__ to allow navigation of the object graph.

2.3.3 Group

class libqtile.config.Group(name, matches=None, exclusive=False, spawn=None, layout=None,
layouts=None, persist=True, init=True, layout_opts=None,
screen_affinity=None, position=9223372036854775807, la-
bel=None)

Represents a “dynamic” group

These groups can spawn apps, only allow certain Matched windows to be on them, hide when they’re not in use,
etc. Groups are identified by their name.

Parameters

name [string] the name of this group

matches [default None] list of Match objects whose windows will be assigned to this group

exclusive [boolean] when other apps are started in this group, should we allow them here or
not?

spawn [string or list of strings] this will be exec() d when the group is created, you can pass
either a program name or a list of programs to exec()

layout [string] the name of default layout for this group (e.g. ‘max’ or ‘stack’). This is the name
specified for a particular layout in config.py or if not defined it defaults in general the class
name in all lower case.

layouts [list] the group layouts list overriding global layouts. Use this to define a separate list
of layouts for this particular group.

persist [boolean] should this group stay alive with no member windows?

init [boolean] is this group alive when qtile starts?

position [int] group position

label [string] the display name of the group. Use this to define a display name other than name
of the group. If set to None, the display name is set to the name.

2.3. Scripting Commands 107

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

2.3.4 Screen

class libqtile.config.Screen(top: Optional[Union[libqtile.bar.Bar, libqtile.bar.Gap]] = None,
bottom: Optional[Union[libqtile.bar.Bar, libqtile.bar.Gap]] =
None, left: Optional[Union[libqtile.bar.Bar, libqtile.bar.Gap]] =
None, right: Optional[Union[libqtile.bar.Bar, libqtile.bar.Gap]] =
None, wallpaper: Optional[str] = None, wallpaper_mode: Op-
tional[str] = None, x: Optional[int] = None, y: Optional[int] =
None, width: Optional[int] = None, height: Optional[int] = None)

A physical screen, and its associated paraphernalia.

Define a screen with a given set of Bars of a specific geometry. Note that bar.Bar objects can only be placed at
the top or the bottom of the screen (bar.Gap objects can be placed anywhere). Also, x, y, width, and height
aren’t specified usually unless you are using ‘fake screens’.

The wallpaper parameter, if given, should be a path to an image file. How this image is painted to the screen
is specified by the wallpaper_mode parameter. By default, the image will be placed at the screens origin
and retain its own dimensions. If the mode is ‘fill’, the image will be centred on the screen and resized to fill it.
If the mode is ‘stretch’, the image is stretched to fit all of it into the screen.

cmd_commands()→ List[str]
Returns a list of possible commands for this object

Used by __qsh__ for command completion and online help

cmd_doc(name)→ str
Returns the documentation for a specified command name

Used by __qsh__ to provide online help.

cmd_eval(code: str)→ Tuple[bool, Optional[str]]
Evaluates code in the same context as this function

Return value is tuple (success, result), success being a boolean and result being a string representing the
return value of eval, or None if exec was used instead.

cmd_function(function, *args, **kwargs)→ None
Call a function with current object as argument

cmd_info()
Returns a dictionary of info for this screen.

cmd_items(name)→ Tuple[bool, List[str]]
Returns a list of contained items for the specified name

Used by __qsh__ to allow navigation of the object graph.

cmd_next_group(skip_empty=False, skip_managed=False)
Switch to the next group

cmd_prev_group(skip_empty=False, skip_managed=False)
Switch to the previous group

cmd_resize(x=None, y=None, w=None, h=None)
Resize the screen

cmd_toggle_group(group_name=None)
Switch to the selected group or to the previously active one

cmd_togglegroup(groupName=None)
Switch to the selected group or to the previously active one

Deprecated: use toggle_group()

108 Chapter 2. Advanced scripting

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

2.3.5 Window

class libqtile.window.Window(window, qtile)

cmd_bring_to_front()

cmd_commands()→ List[str]
Returns a list of possible commands for this object

Used by __qsh__ for command completion and online help

cmd_disable_floating()

cmd_disable_fullscreen()

cmd_doc(name)→ str
Returns the documentation for a specified command name

Used by __qsh__ to provide online help.

cmd_down_opacity()

cmd_enable_floating()

cmd_enable_fullscreen()

cmd_eval(code: str)→ Tuple[bool, Optional[str]]
Evaluates code in the same context as this function

Return value is tuple (success, result), success being a boolean and result being a string representing the
return value of eval, or None if exec was used instead.

cmd_focus(warp=None)
Focuses the window.

cmd_function(function, *args, **kwargs)→ None
Call a function with current object as argument

cmd_get_position()

cmd_get_size()

cmd_hints()
Returns the X11 hints (WM_HINTS and WM_SIZE_HINTS) for this window.

cmd_info()
Returns a dictionary of info for this object

cmd_inspect()
Tells you more than you ever wanted to know about a window

cmd_items(name)→ Tuple[bool, List[str]]
Returns a list of contained items for the specified name

Used by __qsh__ to allow navigation of the object graph.

cmd_kill()
Kill this window

Try to do this politely if the client support this, otherwise be brutal.

cmd_match(*args, **kwargs)

cmd_move_floating(dx, dy)
Move window by dx and dy

2.3. Scripting Commands 109

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

cmd_opacity(opacity)

cmd_place(x, y, width, height, borderwidth, bordercolor, above=False, margin=None)

cmd_resize_floating(dw, dh)
Add dw and dh to size of window

cmd_set_position(x, y)

cmd_set_position_floating(x, y)
Move window to x and y

cmd_set_size_floating(w, h)
Set window dimensions to w and h

cmd_static(screen=None, x=None, y=None, width=None, height=None)
Makes this window a static window, attached to a Screen

If any of the arguments are left unspecified, the values given by the window itself are used instead. So, for
a window that’s aware of its appropriate size and location (like dzen), you don’t have to specify anything.

cmd_toggle_floating()

cmd_toggle_fullscreen()

cmd_toggle_maximize()

cmd_toggle_minimize()

cmd_togroup(groupName=None, *, switch_group=False)
Move window to a specified group.

If groupName is not specified, we assume the current group. If switch_group is True, also switch to that
group.

Examples

Move window to current group:

togroup()

Move window to group “a”:

togroup("a")

Move window to group “a”, and switch to group “a”:

togroup("a", switch_group=True)

cmd_toscreen(index=None)
Move window to a specified screen.

If index is not specified, we assume the current screen

110 Chapter 2. Advanced scripting

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Examples

Move window to current screen:

toscreen()

Move window to screen 0:

toscreen(0)

cmd_up_opacity()

2.4 Keybindings in images

2.4.1 Default configuration

2.4. Keybindings in images 111

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

112 Chapter 2. Advanced scripting

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

2.4.2 Generate your own images

Qtile provides a tiny helper script to generate keybindings images from a config file. In the repository, the script is
located under scripts/gen-keybinding-img.

This script accepts a configuration file and an output directory. If no argument is given, the default configuration will
be used and files will be placed in same directory where the command has been run.

usage: gen-keybinding-img [-h] [-c CONFIGFILE] [-o OUTPUT_DIR]

Qtile keybindings image generator

optional arguments:
-h, --help show this help message and exit
-c CONFIGFILE, --config CONFIGFILE

use specified configuration file. If no presented
default will be used

-o OUTPUT_DIR, --output-dir OUTPUT_DIR
set directory to export all images to

2.4. Keybindings in images 113

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

114 Chapter 2. Advanced scripting

CHAPTER

THREE

GETTING INVOLVED

3.1 Contributing

3.1.1 Reporting bugs

Perhaps the easiest way to contribute to Qtile is to report any bugs you run into on the GitHub issue tracker.

Useful bug reports are ones that get bugs fixed. A useful bug report normally has two qualities:

1. Reproducible. If your bug is not reproducible it will never get fixed. You should clearly mention the steps to
reproduce the bug. Do not assume or skip any reproducing step. Described the issue, step-by-step, so that it is
easy to reproduce and fix.

2. Specific. Do not write a essay about the problem. Be Specific and to the point. Try to summarize the problem
in minimum words yet in effective way. Do not combine multiple problems even they seem to be similar. Write
different reports for each problem.

Ensure to include any appropriate log entries from ~/.local/share/qtile/qtile.log and/or ~/.
xsession-errors!

3.1.2 Writing code

To get started writing code for Qtile, check out our guide to Hacking on Qtile.

Submit a pull request

You’ve done your hacking and are ready to submit your patch to Qtile. Great! Now it’s time to submit a pull request
to our issue tracker on GitHub.

Important: Pull requests are not considered complete until they include all of the following:

• Code that conforms to PEP8.

• Unit tests that pass locally and in our CI environment (More below).

• Documentation updates on an as needed basis.

Feel free to add your contribution (no matter how small) to the appropriate place in the CHANGELOG as well!

115

https://github.com/qtile/qtile/issues
https://help.github.com/articles/using-pull-requests
https://github.com/qtile/qtile/issues

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Unit testing

We must test each unit of code to ensure that new changes to the code do not break existing functionality. The
framework we use to test Qtile is pytest. How pytest works is outside of the scope of this documentation, but there are
tutorials online that explain how it is used.

Our tests are written inside the test folder at the top level of the repository. Reading through these, you can get a
feel for the approach we take to test a given unit. Most of the tests involve an object called manager. This is the
test manager (defined in test/conftest.py), which exposes a command client at manager.c that we use to test a Qtile
instance running in a separate thread as if we were using a command client from within a running Qtile session.

For any Qtile-specific question on testing, feel free to ask on our issue tracker or on IRC (#qtile on irc.oftc.net).

3.2 Hacking on Qtile

3.2.1 Requirements

Any reasonably recent version of these should work, so you can probably just install them from your package manager.

• pytest

• Xephyr

• xrandr, xcalc, xeyes and xclock (x11-apps on Ubuntu)

On Ubuntu, if testing on Python 3, this can be done with:

sudo apt-get install python3-pytest xserver-xephyr x11-apps

On ArchLinux, the X11 requirements are installed with:

sudo pacman -S xorg-xrandr xorg-xcalc xorg-xeyes xorg-xclock

To build the documentation, you will also need to install graphviz. On ArchLinux, you can install it with sudo
pacman -S graphviz.

3.2.2 Building cffi module

Qtile ships with a small in-tree pangocairo binding built using cffi, pangocffi.py, and also binds to xcursor with
cffi. The bindings are not built at run time and will have to be generated manually when the code is downloaded or
when any changes are made to the cffi library. This can be done by calling:

./scripts/ffibuild

3.2.3 Setting up the environment

In the root of the project, run ./dev.sh. It will create a virtualenv called venv.

Activate this virtualenv with . venv/bin/activate. Deactivate it with the deactivate command.

116 Chapter 3. Getting involved

https://docs.pytest.org
https://github.com/qtile/qtile/issues
https://docs.pytest.org
https://freedesktop.org/wiki/Software/Xephyr/
https://www.graphviz.org/download/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

3.2.4 Building the documentation

Go into the docs/ directory and run pip install -r requirements.txt.

Build the documentation with make html.

Check the result by opening _build/html/index.html in your browser.

3.2.5 Development and testing

In practice, the development cycle looks something like this:

1. make minor code change

2. run appropriate test: pytest tests/test_module.py or pytest -k PATTERN

3. GOTO 1, until hackage is complete

4. run entire test suite: pytest

5. commit

Of course, your patches should also pass the unit tests as well (i.e. make check). These will be run by ci on every
pull request so you can see whether or not your contribution passes.

3.2.6 Coding style

While not all of our code follows PEP8, we do try to adhere to it where possible. All new code should be PEP8
compliant.

The make lint command will run a linter with our configuration over libqtile to ensure your patch complies with
reasonable formatting constraints. We also request that git commit messages follow the standard format.

3.2.7 Deprecation policy

When a widget API is changed, you should deprecate the change using libqtile.widget.base.deprecated
to warn users, in addition to adding it to the appropriate place in the changelog. We will typically remove deprecated
APIs one tag after they are deprecated.

3.2.8 Using Xephyr

Qtile has a very extensive test suite, using the Xephyr nested X server. When tests are run, a nested X server with a
nested instance of Qtile is fired up, and then tests interact with the Qtile instance through the client API. The fact that
we can do this is a great demonstration of just how completely scriptable Qtile is. In fact, Qtile is designed expressly
to be scriptable enough to allow unit testing in a nested environment.

The Qtile repo includes a tiny helper script to let you quickly pull up a nested instance of Qtile in Xephyr, using your
current configuration. Run it from the top-level of the repository, like this:

./scripts/xephyr

Change the screen size by setting the SCREEN_SIZE environment variable. Default: 800x600. Example:

SCREEN_SIZE=1920x1080 ./scripts/xephyr

Change the log level by setting the LOG_LEVEL environment variable. Default: INFO. Example:

3.2. Hacking on Qtile 117

https://www.python.org/dev/peps/pep-0008/
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

LOG_LEVEL=DEBUG ./scripts/xephyr

The script will also pass any additional options to Qtile. For example, you can use a specific configuration file like
this:

./scripts/xephyr -c ~/.config/qtile/other_config.py

Once the Xephyr window is running and focused, you can enable capturing the keyboard shortcuts by hitting Con-
trol+Shift. Hitting them again will disable the capture and let you use your personal keyboard shortcuts again.

You can close the Xephyr window by enabling the capture of keyboard shortcuts and hit Mod4+Control+Q. Mod4
(or Mod) is usually the Super key (or Windows key). You can also close the Xephyr window by running qtile
cmd-obj -o cmd -f shutdown in a terminal (from inside the Xephyr window of course).

You don’t need to run the Xephyr script in order to run the tests as the test runner will launch its own Xephyr instances.

3.2.9 Second X Session

Some users prefer to test Qtile in a second, completely separate X session: Just switch to a new tty and run startx
normally to use the ~/.xinitrc X startup script.

It’s likely though that you want to use a different, customized startup script for testing purposes, for example ~/.
config/qtile/xinitrc. You can do so by launching X with:

startx ~/.config/qtile/xinitrc

startx deals with multiple X sessions automatically. If you want to use xinit instead, you need to first copy /
etc/X11/xinit/xserverrc to ~/.xserverrc; when launching it, you have to specify a new session number:

xinit ~/.config/qtile/xinitrc -- :1

Examples of custom X startup scripts are available in qtile-examples.

3.2.10 Debugging in PyCharm

Make sure to have all the requirements installed and your development environment setup.

PyCharm should automatically detect the venv virtualenv when opening the project. If you are using another viir-
tualenv, just instruct PyCharm to use it in Settings -> Project: qtile -> Project interpreter.

In the project tree, on the left, right-click on the libqtile folder, and click on Mark Directory as ->
Sources Root.

Next, add a Configuration using a Python template with these fields:

• Script path: bin/qtile, or the absolute path to it

• Parameters: -c libqtile/resources/default_config.py, or nothing if you want to use your own
config file in ~/.config/qtile/config.py

• Environment variables: PYTHONUNBUFFERED=1;DISPLAY=:1

• Working directory: the root of the project

• Add contents root to PYTHONPATH: yes

• Add source root to PYTHONPATH: yes

Then, in a terminal, run:

118 Chapter 3. Getting involved

https://github.com/qtile/qtile-examples

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Xephyr +extension RANDR -screen 1920x1040 :1 -ac &

Note that we used the same display, :1, in both the terminal command and the PyCharm configuration environment
variables. Feel free to change the screen size to fit your own screen.

Finally, place your breakpoints in the code and click on Debug!

Once you finished debugging, you can close the Xephyr window with kill PID (use the jobs builtin to get its
PID).

3.2.11 Debugging in VSCode

Make sure to have all the requirements installed and your development environment setup.

Open the root of the repo in VSCode. If you have created it, VSCode should detect the venv virtualenv, if not, select
it.

Create a launch.json file with the following lines.

{
"version": "0.2.0",
"configurations": [

{
"name": "Python: Qtile",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/bin/qtile",
"cwd": "${workspaceFolder}",
"args": ["-c", "libqtile/resources/default_config.py"],
"console": "integratedTerminal",
"env": {"PYTHONUNBUFFERED":"1", "DISPLAY":":1"}

}
]

}

Then, in a terminal, run:

Xephyr +extension RANDR -screen 1920x1040 :1 -ac &

Note that we used the same display, :1, in both the terminal command and the VSCode configuration environment
variables. Then debug usually in VSCode. Feel free to change the screen size to fit your own screen.

3.2.12 Resources

Here are a number of resources that may come in handy:

• Inter-Client Conventions Manual

• Extended Window Manager Hints

• A reasonable basic Xlib Manual

3.2. Hacking on Qtile 119

https://tronche.com/gui/x/icccm/
https://specifications.freedesktop.org/wm-spec/wm-spec-latest.html
https://tronche.com/gui/x/xlib/

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

3.2.13 Troubleshoot

Cairo errors

When running the Xephyr script (./scripts/xephyr), you might see tracebacks with attribute errors like the
following or similar:

AttributeError: cffi library 'libcairo.so.2' has no function, constant or global
→˓variable named 'cairo_xcb_surface_create'

If it happens, it might be because the cairocffi and xcffib dependencies were installed in the wrong order.

To fix this:

1. uninstall them from your environment: with pip uninstall cairocffi xcffib if using a virtualenv,
or with your system package-manager if you installed the development version of Qtile system-wide.

2. re-install them sequentially (again, with pip or with your package-manager):

pip install xcffib
pip install --no-cache-dir cairocffi

See this issue comment for more information.

If you are using your system package-manager and the issue still happens, the packaging of cairocffi might be
broken for your distribution. Try to contact the persons responsible for cairocffi’s packaging on your distribution,
or to install it from the sources with xcffib available.

DBus/GObject errors

When running the Xephyr script (./scripts/xephyr), you might see a line in the output like the following or
similar:

libqtile manager.py:setup_python_dbus():L310 importing dbus/gobject failed, dbus
→˓will not work.

If it happens, it might be because you are missing some dependencies on your system and/or in your Qtile virtualenv.

To fix this:

1. Follow the installation instructions of PyGObject. There are methods for several Linux distributions: pick
yours.

2. There are instructions for system-wide installation and virtualenv installation: pick the relevant one, depending
on how you installed the development version of Qtile (usually in a virtualenv).

3. Optionally re-install Qtile’s dependencies:

pip install -r requirements.txt
pip install -r requirements-dev.txt

120 Chapter 3. Getting involved

https://github.com/qtile/qtile/issues/994#issuecomment-497984551
https://pygobject.readthedocs.io/en/latest/getting_started.html

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

Fonts errors

When running the test suite or the Xephyr script (./scripts/xephyr), you might see errors in the output like the
following or similar:

• Xephyr script:

xterm: cannot load font "-Misc-Fixed-medium-R-*-*-13-120-75-75-C-120-ISO10646-1"
xterm: cannot load font "-misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-
→˓iso10646-1"

• pytest:

---------- Captured stderr call ----------
Warning: Cannot convert string "8x13" to type FontStruct
Warning: Unable to load any usable ISO8859 font
Warning: Unable to load any usable ISO8859 font
Error: Aborting: no font found

-------- Captured stderr teardown --------
Qtile exited with exitcode: -9

If it happens, it might be because you’re missing fonts on your system.

On ArchLinux, you can fix this by installing xorg-fonts-misc:

sudo pacman -S xorg-fonts-misc

Try to search for “xorg fonts misc” with your distribution name on the internet to find how to install them.

3.2. Hacking on Qtile 121

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

122 Chapter 3. Getting involved

CHAPTER

FOUR

MISCELLANEOUS

4.1 Frequently Asked Questions

4.1.1 Why the name Qtile?

Users often wonder, why the Q? Does it have something to do with Qt? No. Below is an IRC excerpt where cortesi
explains the great trial that ultimately brought Qtile into existence, thanks to the benevolence of the Open Source
Gods. Praise be to the OSG!

ramnes: what does Qtile mean?
ramnes: what's the Q?
@tych0: ramnes: it doesn't :)
@tych0: cortesi was just looking for the first letter that wasn't registered

in a domain name with "tile" as a suffix
@tych0: qtile it was :)
cortesi: tych0, dx: we really should have something more compelling to

explain the name. one day i was swimming at manly beach in sydney,
where i lived at the time. suddenly, i saw an enormous great white
right beside me. it went for my leg with massive, gaping jaws, but
quick as a flash, i thumb-punched it in both eyes. when it reared
back in agony, i saw that it had a jagged, gnarly scar on its
stomach... a scar shaped like the letter "Q".

cortesi: while it was distracted, i surfed a wave to shore. i knew that i
had to dedicate my next open source project to the ocean gods, in
thanks for my lucky escape. and thus, qtile got its name...

4.1.2 When I first start xterm/urxvt/rxvt containing an instance of Vim, I see text
and layout corruption. What gives?

Vim is not handling terminal resizes correctly. You can fix the problem by starting your xterm with the “-wf” option,
like so:

xterm -wf -e vim

Alternatively, you can just cycle through your layouts a few times, which usually seems to fix it.

123

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

4.1.3 How do I know which modifier specification maps to which key?

To see a list of modifier names and their matching keys, use the xmodmap command. On my system, the output looks
like this:

$ xmodmap
xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x32), Shift_R (0x3e)
lock Caps_Lock (0x9)
control Control_L (0x25), Control_R (0x69)
mod1 Alt_L (0x40), Alt_R (0x6c), Meta_L (0xcd)
mod2 Num_Lock (0x4d)
mod3
mod4 Super_L (0xce), Hyper_L (0xcf)
mod5 ISO_Level3_Shift (0x5c), Mode_switch (0xcb)

4.1.4 My “pointer mouse cursor” isn’t the one I expect it to be!

Qtile should set the default cursor to left_ptr, you must install xcb-util-cursor if you want support for themed cursors.

4.1.5 LibreOffice menus don’t appear or don’t stay visible

A workaround for problem with the mouse in libreoffice is setting the environment variable
»SAL_USE_VCLPLUGIN=gen«. It is dependet on your system configuration where to do this. e.g. Arch-
Linux with libreoffice-fresh in /etc/profile.d/libreoffice-fresh.sh.

4.2 License

This project is distributed under the MIT license.

Copyright (c) 2008, Aldo Cortesi All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

• genindex

124 Chapter 4. Miscellaneous

INDEX

A
addgroup() (libqtile.hook.subscribe method), 33
AGroupBox (class in libqtile.widget), 48

B
Backlight (class in libqtile.widget), 48
Bar (class in libqtile.bar), 19
Battery (class in libqtile.widget), 49
BatteryIcon (class in libqtile.widget), 50
BitcoinTicker (class in libqtile.widget), 51
Bsp (class in libqtile.layout.bsp), 37

C
Canto (class in libqtile.widget), 53
CapsNumLockIndicator (class in libqtile.widget),

54
changegroup() (libqtile.hook.subscribe method), 33
CheckUpdates (class in libqtile.widget), 54
Chord (class in libqtile.widget), 55
Click (class in libqtile.config), 16
client_focus() (libqtile.hook.subscribe method), 33
client_killed() (libqtile.hook.subscribe method),

33
client_managed() (libqtile.hook.subscribe method),

33
client_mouse_enter() (libqtile.hook.subscribe

method), 33
client_name_updated() (libqtile.hook.subscribe

method), 33
client_new() (libqtile.hook.subscribe method), 33
client_urgent_hint_changed()

(libqtile.hook.subscribe method), 34
Clipboard (class in libqtile.widget), 55
Clock (class in libqtile.widget), 56
cmd_add_rule() (libqtile.core.manager.Qtile

method), 102
cmd_addgroup() (libqtile.core.manager.Qtile

method), 102
cmd_bring_to_front() (libqtile.window.Window

method), 109
cmd_commands() (libqtile.bar.Bar method), 106
cmd_commands() (libqtile.config.Screen method), 108

cmd_commands() (libqtile.core.manager.Qtile
method), 102

cmd_commands() (libqtile.window.Window method),
109

cmd_critical() (libqtile.core.manager.Qtile
method), 102

cmd_debug() (libqtile.core.manager.Qtile method),
102

cmd_delgroup() (libqtile.core.manager.Qtile
method), 103

cmd_disable_floating()
(libqtile.window.Window method), 109

cmd_disable_fullscreen()
(libqtile.window.Window method), 109

cmd_display_kb() (libqtile.core.manager.Qtile
method), 103

cmd_doc() (libqtile.bar.Bar method), 106
cmd_doc() (libqtile.config.Screen method), 108
cmd_doc() (libqtile.core.manager.Qtile method), 103
cmd_doc() (libqtile.window.Window method), 109
cmd_down_opacity() (libqtile.window.Window

method), 109
cmd_enable_floating() (libqtile.window.Window

method), 109
cmd_enable_fullscreen()

(libqtile.window.Window method), 109
cmd_error() (libqtile.core.manager.Qtile method),

103
cmd_eval() (libqtile.bar.Bar method), 106
cmd_eval() (libqtile.config.Screen method), 108
cmd_eval() (libqtile.core.manager.Qtile method), 103
cmd_eval() (libqtile.window.Window method), 109
cmd_fake_button_press() (libqtile.bar.Bar

method), 107
cmd_findwindow() (libqtile.core.manager.Qtile

method), 103
cmd_focus() (libqtile.window.Window method), 109
cmd_function() (libqtile.bar.Bar method), 107
cmd_function() (libqtile.config.Screen method), 108
cmd_function() (libqtile.core.manager.Qtile

method), 103
cmd_function() (libqtile.window.Window method),

125

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

109
cmd_get_position() (libqtile.window.Window

method), 109
cmd_get_size() (libqtile.window.Window method),

109
cmd_get_state() (libqtile.core.manager.Qtile

method), 103
cmd_get_test_data() (libqtile.core.manager.Qtile

method), 103
cmd_groups() (libqtile.core.manager.Qtile method),

103
cmd_hide_show_bar() (libqtile.core.manager.Qtile

method), 103
cmd_hints() (libqtile.window.Window method), 109
cmd_info() (libqtile.bar.Bar method), 107
cmd_info() (libqtile.config.Screen method), 108
cmd_info() (libqtile.core.manager.Qtile method), 103
cmd_info() (libqtile.window.Window method), 109
cmd_inspect() (libqtile.window.Window method),

109
cmd_internal_windows()

(libqtile.core.manager.Qtile method), 103
cmd_items() (libqtile.bar.Bar method), 107
cmd_items() (libqtile.config.Screen method), 108
cmd_items() (libqtile.core.manager.Qtile method),

103
cmd_items() (libqtile.window.Window method), 109
cmd_kill() (libqtile.window.Window method), 109
cmd_list_widgets() (libqtile.core.manager.Qtile

method), 104
cmd_loglevel() (libqtile.core.manager.Qtile

method), 104
cmd_loglevelname() (libqtile.core.manager.Qtile

method), 104
cmd_match() (libqtile.window.Window method), 109
cmd_move_floating() (libqtile.window.Window

method), 109
cmd_next_group() (libqtile.config.Screen method),

108
cmd_next_layout() (libqtile.core.manager.Qtile

method), 104
cmd_next_screen() (libqtile.core.manager.Qtile

method), 104
cmd_next_urgent() (libqtile.core.manager.Qtile

method), 104
cmd_opacity() (libqtile.window.Window method),

109
cmd_pause() (libqtile.core.manager.Qtile method),

104
cmd_place() (libqtile.window.Window method), 110
cmd_prev_group() (libqtile.config.Screen method),

108
cmd_prev_layout() (libqtile.core.manager.Qtile

method), 104

cmd_prev_screen() (libqtile.core.manager.Qtile
method), 104

cmd_qtile_info() (libqtile.core.manager.Qtile
method), 104

cmd_qtilecmd() (libqtile.core.manager.Qtile
method), 104

cmd_remove_rule() (libqtile.core.manager.Qtile
method), 104

cmd_resize() (libqtile.config.Screen method), 108
cmd_resize_floating() (libqtile.window.Window

method), 110
cmd_restart() (libqtile.core.manager.Qtile method),

104
cmd_run_extension() (libqtile.core.manager.Qtile

method), 104
cmd_screens() (libqtile.core.manager.Qtile method),

104
cmd_set_position() (libqtile.window.Window

method), 110
cmd_set_position_floating()

(libqtile.window.Window method), 110
cmd_set_size_floating()

(libqtile.window.Window method), 110
cmd_shutdown() (libqtile.core.manager.Qtile

method), 104
cmd_simulate_keypress()

(libqtile.core.manager.Qtile method), 104
cmd_spawn() (libqtile.core.manager.Qtile method),

105
cmd_spawncmd() (libqtile.core.manager.Qtile

method), 105
cmd_static() (libqtile.window.Window method), 110
cmd_status() (libqtile.core.manager.Qtile method),

105
cmd_switch_groups() (libqtile.core.manager.Qtile

method), 105
cmd_switchgroup() (libqtile.core.manager.Qtile

method), 105
cmd_sync() (libqtile.core.manager.Qtile method), 105
cmd_to_layout_index()

(libqtile.core.manager.Qtile method), 105
cmd_to_screen() (libqtile.core.manager.Qtile

method), 105
cmd_toggle_floating() (libqtile.window.Window

method), 110
cmd_toggle_fullscreen()

(libqtile.window.Window method), 110
cmd_toggle_group() (libqtile.config.Screen

method), 108
cmd_toggle_maximize() (libqtile.window.Window

method), 110
cmd_toggle_minimize() (libqtile.window.Window

method), 110
cmd_togglegroup() (libqtile.config.Screen method),

126 Index

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

108
cmd_togroup() (libqtile.core.manager.Qtile method),

106
cmd_togroup() (libqtile.window.Window method),

110
cmd_toscreen() (libqtile.window.Window method),

110
cmd_tracemalloc_dump()

(libqtile.core.manager.Qtile method), 106
cmd_tracemalloc_toggle()

(libqtile.core.manager.Qtile method), 106
cmd_up_opacity() (libqtile.window.Window

method), 111
cmd_validate_config()

(libqtile.core.manager.Qtile method), 106
cmd_warning() (libqtile.core.manager.Qtile method),

106
cmd_windows() (libqtile.core.manager.Qtile method),

106
Cmus (class in libqtile.widget), 56
Columns (class in libqtile.layout.columns), 38
CommandSet (class in libqtile.extension), 91
Countdown (class in libqtile.widget), 57
CPU (class in libqtile.widget), 52
CPUGraph (class in libqtile.widget), 53
current_screen_change()

(libqtile.hook.subscribe method), 34
CurrentLayout (class in libqtile.widget), 57
CurrentLayoutIcon (class in libqtile.widget), 58
CurrentScreen (class in libqtile.widget), 58

D
DebugInfo (class in libqtile.widget), 60
delgroup() (libqtile.hook.subscribe method), 34
DF (class in libqtile.widget), 59
Dmenu (class in libqtile.extension), 92
DmenuRun (class in libqtile.extension), 92
Drag (class in libqtile.config), 16
DropDown (class in libqtile.config), 11

E
enter_chord() (libqtile.hook.subscribe method), 34
EzConfig (class in libqtile.config), 15

F
float_change() (libqtile.hook.subscribe method), 34
Floating (class in libqtile.layout.floating), 36
focus_change() (libqtile.hook.subscribe method), 34

G
Gap (class in libqtile.bar), 20
GenPollText (class in libqtile.widget), 60
GenPollUrl (class in libqtile.widget), 60

GmailChecker (class in libqtile.widget), 61
Group (class in libqtile.config), 8
group_window_add() (libqtile.hook.subscribe

method), 34
GroupBox (class in libqtile.widget), 62

H
HDDBusyGraph (class in libqtile.widget), 63
HDDGraph (class in libqtile.widget), 63

I
IdleRPG (class in libqtile.widget), 64
Image (class in libqtile.widget), 64
ImapWidget (class in libqtile.widget), 65

J
J4DmenuDesktop (class in libqtile.extension), 93

K
Key (class in libqtile.config), 14
KeyboardKbdd (class in libqtile.widget), 66
KeyboardLayout (class in libqtile.widget), 66
KeyChord (class in libqtile.config), 15
KhalCalendar (class in libqtile.widget), 67

L
LaunchBar (class in libqtile.widget), 68
layout_change() (libqtile.hook.subscribe method),

35
leave_chord() (libqtile.hook.subscribe method), 35

M
Maildir (class in libqtile.widget), 68
Match (class in libqtile.config), 9
Matrix (class in libqtile.layout.matrix), 39
Max (class in libqtile.layout.max), 39
Memory (class in libqtile.widget), 69
MemoryGraph (class in libqtile.widget), 70
Mirror (class in libqtile.widget), 70
Moc (class in libqtile.widget), 70
MonadTall (class in libqtile.layout.xmonad), 39
MonadWide (class in libqtile.layout.xmonad), 41
Mpd2 (class in libqtile.widget), 71
Mpris2 (class in libqtile.widget), 74

N
Net (class in libqtile.widget), 74
net_wm_icon_change() (libqtile.hook.subscribe

method), 35
NetGraph (class in libqtile.widget), 75
Notify (class in libqtile.widget), 76

O
OpenWeather (class in libqtile.widget), 76

Index 127

Qtile Documentation, Release 0.17.1.dev0+g6c4d055.d20210213

P
Pomodoro (class in libqtile.widget), 79
Prompt (class in libqtile.widget), 79
PulseVolume (in module libqtile.widget), 80

Q
Qtile (class in libqtile.core.manager), 102
QuickExit (class in libqtile.widget), 80

R
RatioTile (class in libqtile.layout.ratiotile), 43
restart() (libqtile.hook.subscribe method), 35
Rule (class in libqtile.config), 10
RunCommand (class in libqtile.extension), 94

S
ScratchPad (class in libqtile.config), 11
Screen (class in libqtile.config), 19
screen_change() (libqtile.hook.subscribe method),

35
selection_change() (libqtile.hook.subscribe

method), 35
selection_notify() (libqtile.hook.subscribe

method), 35
Sep (class in libqtile.widget), 81
setgroup() (libqtile.hook.subscribe method), 36
She (class in libqtile.widget), 81
shutdown() (libqtile.hook.subscribe method), 36
simple_key_binder() (in module libqtile.dgroups),

9
Slice (class in libqtile.layout.slice), 44
Spacer (class in libqtile.widget), 82
Stack (class in libqtile.layout.stack), 44
startup() (libqtile.hook.subscribe method), 36
startup_complete() (libqtile.hook.subscribe

method), 36
startup_once() (libqtile.hook.subscribe method), 36
StockTicker (class in libqtile.widget), 82
SwapGraph (class in libqtile.widget), 83
Systray (class in libqtile.widget), 84

T
TaskList (class in libqtile.widget), 84
TextBox (class in libqtile.widget), 85
ThermalSensor (class in libqtile.widget), 86
Tile (class in libqtile.layout.tile), 44
TreeTab (class in libqtile.layout.tree), 45

V
VerticalTile (class in libqtile.layout.verticaltile), 46
Volume (class in libqtile.widget), 86

W
Wallpaper (class in libqtile.widget), 87

WidgetBox (class in libqtile.widget), 88
Window (class in libqtile.window), 109
WindowCount (class in libqtile.widget), 89
WindowList (class in libqtile.extension), 94
WindowName (class in libqtile.widget), 89
WindowTabs (class in libqtile.widget), 90
Wlan (class in libqtile.widget), 90

Z
Zoomy (class in libqtile.layout.zoomy), 48

128 Index

	Getting started
	Advanced scripting
	Getting involved
	Miscellaneous
	Index

