Qtile Documentation
Release 0.16.2.dev0+g04be6f6.d20200812

Aldo Cortesi

Aug 12, 2020

Contents

1 Getting started

2 Advanced scripting
3 Getting involved

4 Miscellaneous

Index

91

109

117

119

CHAPTER 1

Getting started

1.1 Installing Qtile

1.1.1 Distro Guides

Below are the preferred installation methods for specific distros. If you are running something else, please see /n-
stalling From Source.

Installing on Arch Linux

Stable versions of Qtile are currently packaged for Arch Linux. To install this package, run:

pacman -S gtile

Please see the ArchWiki for more information on Qtile.

Installing on Fedora

Stable versions of Qtile are currently packaged for current versions of Fedora. To install this package, run:

dnf -y install gtile

Installing on Funtoo

Latest versions of Qtile are available on Funtoo with Python 2.7, 3.4, and 3.5 implementations. To install it, run:

emerge —av x1l-wm/gtile

You can also install the development version from GitHub:

https://wiki.archlinux.org/index.php/Qtile

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

echo "x11-wm/gtile-9999 «x" >> /etc/portage/package.accept_keywords
emerge —-av gtile

Customize

You can customize your installation with the following useflags:
* dbus
» widget-khal-calendar
* widget-imap
» widget-keyboardkbdd
 widget-launchbar
* widget-mpd
* widget-mpris
* widget-wlan
The dbus useflag is enabled by default. Disable it only if you know what it is and know you don’t use/need it.

All widget-* useflags are disabled by default because these widgets require additional dependencies while not everyone
will use them. Enable only widgets you need to avoid extra dependencies thanks to these useflags.

Visit Funtoo Qtile documentation for more details on Qtile installation on Funtoo.

Installing on Debian or Ubuntu

Note: As of Ubuntu 20.04 (Focal Fossa), the package has been outdated and removed from the Ubuntu’s official
package list. Users are advised to follow the instructions of Installing From Source.

On other recent Ubuntu (17.04 or greater) and Debian unstable versions, there are Qtile packages available via:

sudo apt-get install gtile

On older versions of Ubuntu (15.10 to 16.10) and Debian 9, the dependencies are available via:

sudo apt-get install python3-xcffib python3-cairocffi

Installing on Slackware

Qtile is available on the SlackBuilds.org as:

Package Name | Description
qtile stable branch (release)

Using slpkg (third party package manager)

The easy way to install Qtile is with slpkg. For example:

2 Chapter 1. Getting started

http://www.funtoo.org/Package:Qtile
https://slackbuilds.org/repository/14.2/desktop/qtile/
https://github.com/dslackw/slpkg

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

slpkg —-s sbo gtile

Manual installation

Download dependencies first and install them. The order in which you need to install is:
* pycparser
e cffi
* futures
* python-xcffib
* trollius
e cairocffi
* gtile
Please see the HOWTO for more information on SlackBuild Usage HOWTO.

Installing on FreeBSD

Qtile is available via FreeBSD Ports. It can be installed with

pkg install gtile

1.1.2 Installing From Source

First, you need to install all of Qtile’s dependencies (although some are optional/not needed depending on your Python
version, as noted below).

Note that Python 3 versions 3.5 and newer are currently supported and tested, including corresponding PyPy3 versions.

xcffib

Qtile uses xcffib as an XCB binding, which has its own instructions for building from source. However, if you’d
like to skip building it, you can install its dependencies, you will need libxcb and libffi with the associated headers
(libxcb-renderO-dev and 1ibffi-dev on Ubuntu), and install it via PyPI:

pip install xcffib

cairocffi

Qtile uses cairocffi with XCB support via xcffib. You’ll need 1ibcairo2, the underlying library used by the binding.
You should be sure before you install cairocffi that xcffib has been installed, otherwise the needed cairo-xcb
bindings will not be built. Once you’ve got the dependencies installed, you can use the latest version on PyPI:

pip install --no-cache-dir cairocffi

1.1. Installing Qtile 3

https://slackbuilds.org/howto/
https://www.freshports.org/x11-wm/qtile/
https://github.com/tych0/xcffib#installation
https://pythonhosted.org/cairocffi/overview.html

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

pangocairo
You’ll also need libpangocairo, which on Ubuntu can be installed via sudo apt-get install

libpangocairo-1.0-0. Qtile uses this to provide text rendering (and binds directly to it via cffi with a small
in-tree binding).

dbus/gobject
Until someone comes along and writes an asyncio-based dbus library, gtile will depend on python—dbus to interact
with dbus. This means that if you want to use things like notification daemon or mpris widgets, you’ll need to install

python-gobject and python-dbus. Qtile will run fine without these, although it will emit a warning that some things
won’t work.

Qtile

With the dependencies in place, you can now install gtile:

git clone git://github.com/qgtile/gtile.git
cd gtile
pip install

Stable versions of Qtile can be installed from PyPI:

pip install gtile

As long as the necessary libraries are in place, this can be done at any point, however, it is recommended that you first
install xcffib to ensure the cairo-xcb bindings are built (see above).

The above steps are sufficient to run Qtile directly, but there are some extra works if you want to run it within a
virtualenv. Here are the steps on a Fedora system for user foo, it should work on other Linux systems too.

1. Clone the repo as ~/local/qgtile/.

mkdir -p ~/local/
cd ~/local/
git clone git://github.com/gtile/qgtile.git

2. Create a virtualenv ~/local/gtile/venv/, and install the dependencies there (see above).

3. Create a glue shell to take advantage of the virtualenv.

cat > /home/foo/local/gtile/gtile-venv-entry <<EOF
#!/bin/bash

source ~/local/gqtile/venv/bin/activate
python3 ~/local/gtile/bin/gtile $x
EOF

4. Create an xsession file. Note that it can only be used to log in as user foo due to file system permission
restriction.

cat > /usr/share/xsessions/qgtile-venv.desktop <<EOF
[Desktop Entry]

Name=Qtile (venv)

Comment=Qtile Session Within Venv
Exec=/home/foo/local/qgtile/gtile-venv—-entry

(continues on next page)

4 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

Type=Application
Keywords=wm;tiling
EOF

5. Log out or reboot your system, then select “Qtile(venv)” as your window manager by clicking the gear icon ()
when logging in again.

1.2 Configuration

Qtile is configured in Python. A script (~/.config/gtile/config.py by default) is evaluated, and a small set
of configuration variables are pulled from its global namespace.

1.2.1 Configuration lookup order

Qtile looks in the following places for a configuration file, in order:
* The location specified by the —c argument.
¢ $SXDG_CONFIG_HOME/gtile/config.py,ifitis set
e ~/.config/gtile/config.py

e It reads the module 1ibgtile.resources.default_config, included by default with every Qtile in-
stallation.

Qtile will try to create the configuration file as a copy of the default config, if it doesn’t exist yet.

1.2.2 Default Configuration

The default configuration is invoked when qtile cannot find a configuration file. In addition, if qtile is restarted via
gshell, gtile will load the default configuration if the config file it finds has some kind of error in it. The documentation
below describes the configuration lookup process, as well as what the key bindings are in the default config.

The default config is not intended to be suitable for all users; it’s mostly just there so qtile does /something/ when fired
up, and so that it doesn’t crash and cause you to lose all your work if you reload a bad config.

Key Bindings
The mod key for the default config is mod4, which is typically bound to the “Super” keys, which are things like the
windows key and the mac command key. The basic operation is:

e mod + kormod + j:switch windows on the current stack

* mod + <space>: put focus on the other pane of the stack (when in stack layout)

* mod + <tab>: switch layouts

* mod + w: close window

e mod + <ctrl> + r:restartqtile with new config

* mod + <group name>: switch to that group

e mod + <shift> + <group name>: send a window to that group

e mod + <enter>: start terminal guessed by libgtile.utils.guess_terminal

1.2. Configuration 5

https://github.com/qtile/qtile/blob/master/libqtile/resources/default_config.py

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

e mod + r: start a little prompt in the bar so users can run arbitrary commands

The default config defines one screen and 8 groups, one for each letter in asdfuiop. It has a basic bottom bar that
includes a group box, the current window name, a little text reminder that you’re using the default config, a system
tray, and a clock.

The default configuration has several more advanced key combinations, but the above should be enough for basic
usage of gtile.

See Keybindings in images for visual keybindings in keyboard layout.

Mouse Bindings

By default, holding your mod key and clicking (and holding) a window will allow you to drag it around as a floating
window.

1.2.3 Configuration variables

A Qtile configuration consists of a file with a bunch of variables in it, which qtile imports and then runs as a python
file to derive its final configuration. The documentation below describes the most common configuration variables;
more advanced configuration can be found in the qtile-examples repository, which includes a number of real-world
configurations that demonstrate how you can tune Qtile to your liking. (Feel free to issue a pull request to add your
own configuration to the mix!)

Lazy objects
The lazy.lazy object is a special helper object to specify a command for later execution. This object acts like the

root of the object graph, which means that we can specify a key binding command with the same syntax used to call
the command through a script or through gshell.

Example

from libgtile.config import Key
from libgtile.command import lazy

keys = [

Key (
["modl"], "k",
lazy.layout.down ()

)I

Key (
["mod1"], "3",
lazy.layout.up ()

Lazy functions

This is overview of the commonly used functions for the key bindings. These functions can be called from commands
on the Qtile object or on another object in the command tree.

Some examples are given below.

6 Chapter 1. Getting started

https://github.com/qtile/qtile-examples

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

General functions

function description
lazy. Run the application
spawn ("application")
lazy. Open command prompt on the bar. See prompt widget.
spawncmd ()
lazy. Restart Qtile and reload its config. It won’t close your windows
restart ()
lazy. Close the whole Qtile
shutdown ()
Group functions
function description
lazy. Use next layout on the actual group
next_layout ()
lazy. Use previous layout on the actual group

prev_layout ()

lazy.screen.
next_group ()

Move to the group on the right

lazy.screen.
prev_group ()

Move to the group on the left

lazy.screen.
toggle_group ()

Move to the last visited group

lazy.
group ["group_na
toscreen ()

Move to the group called group_name. Takes an optional toggle parameter (defaults
nte True). If this group is already on the screen, then the group is toggled with last used

lazy.layout.
increase_ratio

Increase the space for master window at the expense of slave windows
)

lazy.layout.
decrease_ratio

Decrease the space for master window in the advantage of slave windows

)

Window functions

function description

lazy.window. Close the focused window

kill ()

lazy.layout. Switch window focus to other pane(s) of stack
next ()

lazy.window.
togroup ("group,|

Move focused window to the group called group_name
name")

lazy.window.

toggle_floating ()

Put the focused window to/from floating mode

lazy.window.

toggle_fullscreen ()

Put the focused window to/from fullscreen mode

1.2. Configuration

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

ScratchPad DropDown functions

function description

lazy. Toggles the visibility of the specified DropDown window. On first use, the configured
group ["group_nanprddess is spawned.

dropdown_toggle ("name")

Groups

A group is a container for a bunch of windows, analogous to workspaces in other window managers. Each client
window managed by the window manager belongs to exactly one group. The groups config file variable should be
initialized to a list of DGroup objects.

DGroup objects provide several options for group configuration. Groups can be configured to show and hide them-
selves when they’re not empty, spawn applications for them when they start, automatically acquire certain groups, and
various other options.

Example

from libgtile.config import Group, Match
groups = [

Group ("a"),
Group ("b"),
Group ("c", matches=[Match(wm_class=["Firefox"])]),

allow mod3+1 through mod3+0 to bind to groups; if you bind your groups
by hand in your config, you don't need to do this.

from libgtile.dgroups import simple_key_ binder

dgroups_key_binder = simple_key_binder ("mod3")

Reference

Group

class libgtile.config.Group (name, matches=None, exclusive=False, spawn=None, layout=None,
layouts=None, persist=True, init=True, layout_opts=None,
screen_affinity=None, position=9223372036854775807, la-
bel=None)

Represents a “dynamic” group

These groups can spawn apps, only allow certain Matched windows to be on them, hide when they’re not in use,
etc. Groups are identified by their name.

Parameters
name [string] the name of this group
matches [default None] list of Mat ch objects whose windows will be assigned to this group

exclusive [boolean] when other apps are started in this group, should we allow them here or
not?

8 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

spawn [string or list of strings] this will be exec () d when the group is created, you can pass
either a program name or a list of programs to exec ()

layout [string] the name of default layout for this group (e.g. ‘max’ or ‘stack’). This is the name
specified for a particular layout in config.py or if not defined it defaults in general the class
name in all lower case.

layouts [list] the group layouts list overriding global layouts. Use this to define a separate list
of layouts for this particular group.

persist [boolean] should this group stay alive with no member windows?
init [boolean] is this group alive when qtile starts?
position [int] group position

label [string] the display name of the group. Use this to define a display name other than name
of the group. If set to None, the display name is set to the name.

libgtile.dgroups.simple_key binder (mod, keynames=None)
Bind keys to mod+group position or to the keys specified as second argument

Group Matching
Match

class libgtile.config.Match (title=None, wm_class=None, role=None, wm_type=None,
wm_instance_class=None, net_wm_pid=None)
Match for dynamic groups

It can match by title, class or role.

Match supports both regular expression objects (i.e. the result of re.compile ()) or strings (match as a
“include” match). If a window matches any of the things in any of the lists, it is considered a match.

Parameters
title: things to match against the title (WM_NAME)
wm_class: things to match against the second string in WM_CLASS atom
role: things to match against the WM_ROLE atom
wm_type: things to match against the WM_TYPE atom
wm_instance_class: things to match against the first string in WM_CLASS atom

net_wm_pid: things to match against the _NET_WM_PID atom (only int allowed in this rule)

Rule

class libgtile.config.Rule (match, group=None, float=False, intrusive=False,

break_on_match=True)
How to act on a Match

A Rule contains a Match object, and a specification about what to do when that object is matched.
Parameters
match : Match object associated with this Rule

float : auto float this window?

1.2. Configuration 9

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

intrusive : override the group’s exclusive setting?

break_on_match : Should we stop applying rules if this rule is matched?

ScratchPad and DropDown

ScratchPad is a special - by default invisible - group which acts as a container for DropDown configurations. A
DropDown can be configured to spawn a defined process and bind thats process’ window to it. The associated window
can then be shown and hidden by the lazy command dropdown_toggle () (see Lazy objects) from the ScratchPad
group. Thus - for example - your favorite terminal emulator turns into a quake-like terminal by the control of qtile.

If the DropDown window turns visible it is placed as a floating window on top of the current group. If the DropDown
is hidden, it is simply switched back to the ScratchPad group.

Example

from libgtile.config import Group, ScratchPad, DropDown, Key
from libgtile.command import lazy
groups = [
ScratchPad ("scratchpad", [
define a drop down terminal.
it is placed in the upper third of screen by default.
DropDown ("term", "urxvt", opacity=0.8),

define another terminal exclusively for gshell at different position
DropDown ("gshell", "urxvt —-hold —-e gshell",
x=0.05, y=0.4, width=0.9, height=0.6, opacity=0.9,
on_focus_lost_hide=True)]),
Group ("a"),

keys = [
toggle visibiliy of above defined DropDown named "term"
Key ([], 'F11', lazy.groupl'scratchpad'].dropdown_toggle('term')),
Key ([], 'F12', lazy.group['scratchpad'].dropdown_toggle('gshell'")),

There is only one DropDown visible in current group at a time. If a further DropDown is set visible the currently
shown DropDown turns invisble immediately.

Note that if the window is set to not floating, it is detached from DropDown and ScratchPad, and a new pocess is
spawned next time the DropDown is set visible.

Reference
ScratchPad

class libgtile.config.ScratchPad (name, dropdowns=None, position=9223372036854775807,

label="")
Represents a “ScratchPad” group

ScratchPad adds a (by default) invisible group to qtile. That group is used as a place for currently not visible
windows spawned by a DropDown configuration.

Parameters

10 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

name [string] the name of this group
dropdowns [default None] list of DropDown objects
position [int] group position

label [string] The display name of the ScratchPad group. Defaults to the empty string such that
the group is hidden in GroupList widget.

DropDown

class libgtile.config.DropDown (name, cmd, **config)
Configure a specified command and its associated window for the ScratchPad. That window can be shown and
hidden using a configurable keystroke or any other scripted trigger.

key default description

height 0.35 ‘Height of window as fraction of current screen.’

on_focus_lost_|hidee ‘Shall the window be hidden if focus is lost? If so, the Drop-
Down is hidden if window focus or the group is changed.’

opacity 0.9 ‘Opacity of window as fraction. Zero is opaque.’

warp_pointer | True ‘Shall pointer warp to center of window on activation? This
has only effect if any of the on_focus_lost_xxx configurations
is True’

width 0.8 ‘Width of window as fraction of current screen width’

x 0.1 ‘X position of window as fraction of current screen width. O is
the left most position.’

v 0.0 Y position of window as fraction of current screen height. O is
the top most position. To show the window at bottom, you have
to configure a value < 1 and an appropriate height.’

Keys

The keys variable defines Qtile’s key bindings. Individual key bindings are defined with I1ibgtile.config.Key
as demonstrated in the following example. Note that you may specify more than one callback functions.

from libgtile.config import Key

keys = [
Pressing "Meta + Shift + a".
Key (["mod4", "shift"], "a", callback, ...),

Pressing "Control + p".
Key (["control"], "p", callback, ...),

Pressing "Meta + Tab".
Key (["mod4", "modl"], "Tab", callback, ...),

The above may also be written more concisely with the help of the 1ibgtile.config.EzKey helper class. The
following example is functionally equivalent to the above:

from libgtile.config import EzKey as Key

keys = [

(continues on next page)

1.2. Configuration 11

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

Key ("M-S-a", callback, ...),
Key ("C-p", callback, ...),
Key ("M-A-<Tab>", callback, ...),

The EzKey modifier keys (i.e. MASC) can be overwritten through the EzKey.modifier_keys dictionary. The
defaults are:

modifier_keys = {
'M': 'mod4',
'A': 'modl',
'S': 'shift',
'C': 'control',

}

Modifiers

On most systems mod1 is the Alt key - you can see which modifiers, which are enclosed in a list, map to which keys
on your system by running the xmodmap command. This example binds A1t -k to the “down” command on the
current layout. This command is standard on all the included layouts, and switches to the next window (where “next”
is defined differently in different layouts). The matching “up” command switches to the previous window.

Modifiers include: “shift”, “lock”, “control”, “mod1”, “mod2”, “mod3”, “mod4”, and “mod5”. They can be used in
combination by appending more than one modifier to the list:

Key (
[Hmodlll’ "COl’lt]fOl"], llk",
lazy.layout.shuffle_down ()

Special keys

These are most commonly used special keys. For complete list please see the code. You can create bindings on them
just like for the regular keys. For example Key (["mod1"], "F4", lazy.window.kill()).

Return

BackSpace

Tab

space

Home, End
Left, Up, Right, Down
F1,F2,F3,...

XF86AudioRaiseVolume
XF86AudioLowerVolume
XF86AudioMute
XF86AudioNext
XF86AudioPrev
XF86MonBrightnessUp
XF86MonBrightnessDown

12 Chapter 1. Getting started

https://github.com/qtile/qtile/blob/master/libqtile/xkeysyms.py

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Reference
Key

class libqgtile.config.Key (modifiers: List[str], key: str, *commands, desc: str = ")
Defines a keybinding.

Parameters

modifiers: A list of modifier specifications. Modifier specifications are one of: “shift”, “lock”,
“control”, “mod1”, “mod2”, “mod3”, “mod4”, “mod5”.

key: A key specification, e.g. “a”, “Tab”, “Return”, “space”.

commands: A list of lazy command objects generated with the lazy.lazy helper. If multiple
Call objects are specified, they are run in sequence.

desc: description to be added to the key binding

EzConfig

class libgtile.config.EzConfig
Helper class for defining key and button bindings in an emacs-like format. Inspired by Xmonad’s
XMonad.Util.EZConfig.

Layouts

A layout is an algorithm for laying out windows in a group on your screen. Since Qtile is a tiling window manager,
this usually means that we try to use space as efficiently as possible, and give the user ample commands that can be
bound to keys to interact with layouts.

The layouts variable defines the list of layouts you will use with Qtile. The first layout in the list is the default. If
you define more than one layout, you will probably also want to define key bindings to let you switch to the next and
previous layouts.

See Built-in Layouts for a listing of available layouts.

Example

from libgtile import layout
layouts = [
layout .Max (),
layout.Stack (stacks=2)

Mouse

The mouse config file variable defines a set of global mouse actions, and is a list of C1ick and Drag objects, which
define what to do when a window is clicked or dragged.

1.2. Configuration 13

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Example

from libgtile.config import Click, Drag
mouse = [
Drag([mod], "Buttonl", lazy.window.set_position_floating(),
start=lazy.window.get_position()),
Drag ([mod], "Button3", lazy.window.set_size_floating(),
start=lazy.window.get_size()),
Click ([mod], "Button2", lazy.window.bring_ to_front())

The above example can also be written more concisely with the help of the EzC11ick and EzDrag helpers:

from libgtile.config import EzClick as Click, EzDrag as Drag

mouse = [
Drag("M-1", lazy.window.set_position_floating(),
start=lazy.window.get_position()),
Drag ("M-3", lazy.window.set_size_floating(),
start=lazy.window.get_size()),

Click ("M-2", lazy.window.bring_to_front())

Reference
Click

class libgtile.config.Click (modifiers: List[str], button: str, *commands, **kwargs)
Defines binding of a mouse click

It focuses clicked window by default. If you want to prevent it, pass focus=None as an argument

Drag

class libgtile.config.Drag (*args, start=False, **kwargs)
Defines binding of a mouse to some dragging action

On each motion event command is executed with two extra parameters added x and y offset from previous move
It focuses clicked window by default. If you want to prevent it pass, focus=None as an argument

Screens

The screens configuration variable is where the physical screens, their associated bars, and the widgets con-
tained within the bars are defined.

See Built-in Widgets for a listing of available widgets.

Example

Tying together screens, bars and widgets, we get something like this:

14 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

from libgtile.config import Screen
from libgtile import bar, widget

screens = [
Screen (
bottom=bar.Bar ([
widget.GroupBox (),
widget .WindowName ()
1, 30),
)I
Screen (

bottom=bar.Bar ([
widget.GroupBox (),
widget .WindowName ()
1, 30),

Bars support both solid background colors and gradients by supplying a list of colors that make up a linear gradi-
ent. For example, bar.Bar (..., background="#000000") will give you a black back ground (the default),
while bar.Bar (..., background=["#000000", "#FFFFFF"]) will give you a background that fades
from black to white.

Fake Screens

instead of using the variable screens the variable fake_screens can be used to set split a physical monitor into multiple
screens. They can be used like this:

from libgtile.config import Screen
from libgtile import bar, widget

screens look like this

600 300

A B [—=——= /

480 /580

A | B |

#oo e [—=1 /

400 —=[|-———- /

c / /400

I | D

500 [———————— /

400

#

Notice there is a hole in the middle
also D goes down below the others

fake_screens = [
Screen (
bottom=bar.Bar (
[

widget.Prompt (),
widget.Sep (),

widget .WindowName (),
widget.Sep (),
widget.Systray (),
widget.Sep(),

(continues on next page)

1.2. Configuration 15

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

widget.Clock (format="%H:%M:%S .s5m.sY")

i
24,
background="#555555"

) 14

x=0,
y=0,
width=600,
height=480
)I
Screen (

top=bar.Bar (
[
widget.GroupBox (),
widget .WindowName (),
widget.Clock ()

30,
)I
x=600,
y=0,
width=300,
height=580
)I
Screen (
top=bar.Bar (
[
widget.GroupBox (),
widget .WindowName (),
widget.Clock ()

30,
) 14
x=0,
y=480,
width=500,
height=400
)y
Screen (
top=bar.Bar (
[
widget.GroupBox (),
widget .WindowName (),
widget.Clock ()

30,
)
x=500,
y=580,
width=400,
height=400

16 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Third-party bars

There might be some reasons to use third-party bars. For instance you can come from another window manager and
you have already configured dzen2, xmobar, or something else. They definitely can be used with Qtile too. In fact,
any additional configurations aren’t needed. Just run the bar and qtile will adapt.

Reference
Screen

class libgtile.config.Screen (top: Union[libgtile.bar.Bar, libgtile.bar.Gap, None] = None, bot-
tom: Union[libgtile.bar.Bar, libgtile.bar.Gap, None] = None, left:
Union[libgtile.bar.Bar, libqgtile.bar.Gap, None] = None, right:
Union[libgtile.bar.Bar, libgtile.bar.Gap, None] = None, wallpaper:
Optional[str] = None, wallpaper_mode: Optional[str] = None,
x: Optional[int] = None, y: Optional[int] = None, width: Op-

tional[int] = None, height: Optional[int] = None)
A physical screen, and its associated paraphernalia.

Define a screen with a given set of Bars of a specific geometry. Note that bar.Bar objects can only be placed at
the top or the bottom of the screen (bar.Gap objects can be placed anywhere). Also, x, v, width, and height
aren’t specified usually unless you are using ‘fake screens’.

The wallpaper parameter, if given, should be a path to an image file. How this image is painted to the screen
is specified by the wallpaper_mode parameter. By default, the image will be placed at the screens origin
and retain its own dimensions. If the mode is ‘fill’, the image will be centred on the screen and resized to fill it.
If the mode is ‘stretch’, the image is stretched to fit all of it into the screen.

Bar

class libgtile.bar.Bar (widgets, size, **config)
A bar, which can contain widgets

Parameters
widgets : A list of widget objects.

size : The “thickness” of the bar, i.e. the height of a horizontal bar, or the width of a vertical

bar.
key default description
background '#000000" ‘Background colour.’
margin 0 ‘Space around bar as int or list of ints [N E S W]
opacity 1 ‘Bar window opacity.’

Gap

class libgtile.bar.Gap (size)
A gap placed along one of the edges of the screen

If a gap has been defined, Qtile will avoid covering it with windows. The most probable reason for configuring
a gap is to make space for a third-party bar or other static window.

1.2. Configuration 17

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Parameters

size : The “thickness” of the gap, i.e. the height of a horizontal gap, or the width of a vertical
gap.

Hooks

Qtile provides a mechanism for subscribing to certain events in 1ibgtile.hook. To subscribe to a hook in your
configuration, simply decorate a function with the hook you wish to subscribe to.

See Built-in Hooks for a listing of available hooks.

Examples
Automatic floating dialogs

Let’s say we wanted to automatically float all dialog windows (this code is not actually necessary; Qtile floats all
dialogs by default). We would subscribe to the c1ient_new hook to tell us when a new window has opened and, if
the type is “dialog”, as can set the window to float. In our configuration file it would look something like this:

from libgtile import hook

@hook.subscribe.client_new
def floating_dialogs (window) :

dialog = window.window.get_wm_type () == 'dialog'
transient = window.window.get_wm_transient_for ()
if dialog or transient:

window.floating = True

A list of available hooks can be found in the Built-in Hooks reference.

Autostart

If you want to run commands or spawn some applications when Qtile starts, you’ll want to look at the startup and
startup_once hooks. startup is emitted every time Qtile starts (including restarts), whereas startup_once
is only emitted on the very first startup.

Let’s create a file ~/ .config/gtile/autostart.sh that will set our desktop wallpaper and start a few pro-
grams when Qtile first runs.

#!/bin/sh

feh --bg-scale ~/images/wallpaper.jpg &
pidgin &

dropbox start &

We can then subscribe to startup_once to run this script:

import os
import subprocess

@hook . subscribe.startup_once

def autostart () :
home = os.path.expanduser('~/.config/gtile/autostart.sh')
subprocess.call ([home])

18 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Accessing the gtile object

If you want to do something with the Ot i 1e manager instance inside a hook, it can be imported into your config:

from libgtile import gtile

In addition to the above variables, there are several other boolean configuration variables that control specific aspects
of Qtile’s behavior:

variable | default | description

auto_fullscr€ene If a window requests to be fullscreen, it is automatically fullscreened. Set this to false if
you only want windows to be fullscreen if you ask them to be.

bring_front Falisk When clicked, should the window be brought to the front or not. (This sets the X Stack
Mode to Above.)

cursor_wadrFalse If true, the cursor follows the focus as directed by the keyboard, warping to the center of
the focused window.

dgroups_keNdmader | A function which generates group binding hotkeys. It takes a single argument, the DGroups
object, and can use that to set up dynamic key bindings.

A sample implementation is available in libqtile/dgroups.py called simple_key_binder(),
which will bind groups to mod+shift+0-10 by default.

dgroups_dappl rules | A list of Rule objects which can send windows to various groups based on matching criteria.
extension | defmdts Default settings for extensions.

as wid-
get_defaults
floating_laykayout. Floatiihe(flefauttifisating Jayout to use. This allows you to set custom floating rules among other
things if you wish.

See the configuration file for the default float_rules.

focus_on_|wamdwtv_actiBetmyior of the _NET_ACTIVATE_WINDOW message sent by applications

 urgent: urgent flag is set for the window

* focus: automatically focus the window

* smart: automatically focus if the window is in the current group

e never: never automatically focus any window that requests it

follow_mouFeudocus | Controls whether or not focus follows the mouse around as it moves across windows in a
layout.
widget_defaults Default settings for bar widgets.

get (illct(font= ’sans%, & &

fontsize=12,
padding=3)

wmname | “LG3D” | Gasp! We’re lying here. In fact, nobody really uses or cares about this string besides java
UI toolkits; you can see several discussions on the mailing lists, GitHub issues, and other
WM documentation that suggest setting this string if your java app doesn’t work correctly.
We may as well just lie and say that we’re a working one by default. We choose LG3D to
maximize irony: it is a 3D non-reparenting WM written in java that happens to be on java’s
whitelist.

1.2.4 Testing your configuration

The best way to test changes to your configuration is with the provided Xephyr script. This will run Qtile with your
config.py inside a nested X server and prevent your running instance of Qtile from crashing if something goes
wrong.

1.2. Configuration 19

https://github.com/qtile/qtile/blob/master/libqtile/dgroups.py

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

See Hacking Qtile for more information on using Xephyr.

1.2.5 Starting Qtile

There are several ways to start Qtile. The most common way is via an entry in your X session manager’s menu. The
default Qtile behavior can be invoked by creating a qtile.desktop file in /usr/share/xsessions.

A second way to start Qtile is a custom X session. This way allows you to invoke Qtile with custom arguments,
and also allows you to do any setup you want (e.g. special keyboard bindings like mapping caps lock to control,
setting your desktop background, etc.) before Qtile starts. If you’re using an X session manager, you still may
need to create a custom.desktop file similar to the gt ile.desktop file above, but with Exec=/etc/X11/
xsession. Then, create your own ~/ . xsession. There are several examples of user defined xsession s in the
qtile-examples repository.

If there is no display manager such as SDDM, LightDM or other and there is need to start Qtile directly from ~/ .
xinitrc do that by adding exec gtile atthe end.

In very special cases, ex. Qtile crashing during session, then suggestion would be to start through a loop to save
running applications:

while true; do
gtile
done

Finally, if you’re a gnome user, you can start integrate Qtile into Gnome’s session manager and use gnome as usual.

Running from systemd

This case will cover automatic login to Qtile after booting the system without using display manager. It logins in
virtual console and init X by running through session.

Automatic login to virtual console

To get login into virtual console as an example edit gerty service by running systemctl edit getty@ttyl and add instruc-
tions to Jetc/systemd/system/getty @ttyl.service.d/override.conf:

[Service]
ExecStart=
ExecStart=-/usr/bin/agetty —--autologin username --noclear %I S$TERM

username should be changed to current user name.

Check more for other examples.

Autostart X session

After login X session should be started. That can be done by .bash_profile if bash is used or .zprofile in case of zsh.
Other shells can be adjusted by given examples.

if systemctl -gq is—-active graphical.target && [[! SDISPLAY && S$SXDG_VTNR —-eq 1 11;.,
—then

exec startx
fi

20 Chapter 1. Getting started

https://github.com/qtile/qtile/blob/master/resources/qtile.desktop
https://github.com/qtile/qtile-examples
https://wiki.archlinux.org/index.php/Getty#Automatic_login_to_virtual_console

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

And to start Qtile itself .xinitrc should be fixed:

some apps that should be started before Qtile, ex.
#

[[-f ~/.Xresources]] && xrdb -merge ~/.Xresources
~/.fehbg &

nm-applet &

blueman—-applet &
dunst &

#

or

#

#

source ~/.xsession

exec gtile

Running Inside Ghome

Add the following snippet to your Qtile configuration. As per this page, it registers Qtile with gnome-session. Without
it, a “Something has gone wrong!” message shows up a short while after logging in. dbus-send must be on your
$PATH.

import subprocess
import os
from libgtile import hook

@hook.subscribe.startup
def dbus_register():
id = os.environ.get ('DESKTOP_AUTOSTART_ID")
if not id:
return
subprocess.Popen (['dbus-send’',
'-—-session',
'-—print-reply',
'-—dest=org.gnome.SessionManager"',
'/org/gnome/SessionManager',
'org.gnome. SessionManager.RegisterClient’,
'string:gtile’,
'string:"' + id])

This adds a new entry “Qtile GNOME” to GDM’s login screen.

$ cat /usr/share/xsessions/gtile_gnome.desktop
[Desktop Entry]

Name=Qtile GNOME

Comment=Tiling window manager
TryExec=/usr/bin/gnome-session
Exec=gnome-session —--session=qgtile
Type=XSession

The custom session for gnome-session.

For Gnome >= 3.23.2 (Ubuntu >= 17.04, Fedora >= 26, etc.)

$ cat /usr/share/gnome-session/sessions/gtile.session
[GNOME Session]

(continues on next page)

1.2. Configuration 21

https://wiki.gnome.org/Projects/SessionManagement/GnomeSession#A3._Register

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

Name=Qtile session
RequiredComponents=gtile;org.gnome.SettingsDaemon.AllySettings;org.gnome.
—SettingsDaemon.Clipboard;org.gnome.SettingsDaemon.Color;org.gnome.SettingsDaemon.
—Datetime;org.gnome.SettingsDaemon.Housekeeping; org.gnome.SettingsDaemon.Keyboard;
—org.gnome.SettingsDaemon.MediaKeys;org.gnome.SettingsDaemon.Mouse; org.gnome.
—SettingsDaemon.Power;org.gnome.SettingsDaemon.PrintNotifications;org.gnome.
—SettingsDaemon.Rfkill;org.gnome.SettingsDaemon.ScreensaverProxy;org.gnome.
—SettingsDaemon.Sharing;org.gnome.SettingsDaemon.Smartcard; org.gnome.SettingsDaemon.
—Sound; org.gnome.SettingsDaemon.Wacom; org.gnome.SettingsDaemon.XSettings;

Or for older Gnome versions

$ cat /usr/share/gnome-session/sessions/gtile.session
[GNOME Session]

Name=Qtile session

RequiredComponents=gtile; gnome-settings—-daemon;

So that Qtile starts automatically on login.

$ cat /usr/share/applications/gtile.desktop
[Desktop Entry]

Type=Application

Encoding=UTF-8

Name=Qtile

Exec=qgtile

NoDisplay=true

X-GNOME-WMName=Qtile
X-GNOME-Autostart-Phase=WindowManager
X-GNOME-Provides=windowmanager
X-GNOME-Autostart-Notify=false

The above does not start gnome-panel. Getting gnome-panel to work requires some extra Qtile configuration, mainly
making the top and bottom panels static on panel startup and leaving a gap at the top (and bottom) for the panel
window.

You might want to add keybindings to log out of the GNOME session.

Key ([mod, 'control'], 'l', lazy.spawn('gnome-screensaver—command —-1")),
Key ([mod, 'control'], 'g', lazy.spawn('gnome-session-quit —--logout —--no-prompt')),
Key ([mod, 'shift', 'control']l, 'qg', lazy.spawn('gnome-session-quit —--power-off')),

The above apps need to be in your path (though they are typically installed in /usr/bin, so they probably are if
they’re installed at all).

1.3 Shell commands

1.3.1 gshell

The Qtile command shell is a command-line shell interface that provides access to the full complement of Qtile
command functions. The shell features command name completion, and full command documentation can be accessed
from the shell itself. The shell uses GNU Readline when it’s available, so the interface can be configured to, for
example, obey VI keybindings with an appropriate . inputrc file. See the GNU Readline documentation for more
information.

22 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Navigating the Object Graph

The shell presents a filesystem-like interface to the object graph - the builtin “cd” and “Is” commands act like their
familiar shell counterparts:

> 1s
layout/ widget/ screen/ bar/ window/ group/

> cd bar

bar> 1s
bottom/

bar> cd bottom

bar['bottom']> 1s
screen/

bar['bottom']> cd ../..

> 1s
layout/ widget/ screen/ bar/ window/ group/

Note that the shell provides a “short-hand” for specifying node keys (as opposed to children). The following is a valid
shell path:

’> cd group/4/window/31457314

The command prompt will, however, always display the Python node path that should be used in scripts and key
bindings:

’group['4'}.window[31457314]>

Live Documentation

The shell help command provides the canonical documentation for the Qtile API:

> cd layout/1

layout [1]> help

help command —— Help for a specific command.
Builtin
cd exit help 1s q quit

add commands current delete doc
down get info items next previous
rotate shuffle_down shuffle_up toggle_split wup

layout [1]> help previous
previous ()
Focus previous stack.

1.3. Shell commands 23

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Reference

Qsh

class libgtile.sh.QSh (client: libgtile.command_interface. CommandiInterface, completekey="tab’)
Qtile shell instance

do_cd (arg) — str
Change to another path.

Examples

cd layout/0
cd ../layout

do_exit (args) — None
Exit gshell

do_1s (arg: str) — str
List contained items on a node.

Examples

>1s > 1Is ../layout

do_pwd (arg) — str
Returns the current working location

This is the same information as presented in the gshell prompt, but is very useful when running igshell.
Examples

> pwd / > cd bar/top bar[‘top’]> pwd bar[‘top’]

do_help (arg) — str
Give help on commands and builtins

When invoked without arguments, provides an overview of all commands. When passed as an argument,
also provides a detailed help on a specific command or builtin.

Examples

> help

> help command

1.3.2 dqtile-cmd

A Rofi/dmenu interface to qgtile-cmd. Accepts all arguments of gtile-cmd.

24 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Examples:

Output of dgtile-cmd -o cmd

dmenu: -

Alt-1 Prompt for args and show function help (if -f is present)
Go back to menu.

C-u Clear input
Esc Exit
add rule * Add a dgroup rule, returns rule id needed to remove it
-0 cmd -f addgroup * Add a group with the given name
-0 cmd -f commands Returns a list of possible commands for this object
-0 cmd -f critical Set log level to CRITICAL
-0 cmd -f debug Set log level to DEBUG
-0 cmd -T delgroup * Delete a group with the given name
-0 cmd -f display kb * Display table of key bindings
-0 cmd -T doc * Returns the documentation for a specified command name
-0 cmd -f error Set log level to ERROR

-0 cmd -T eval * Evaluates code in the same context as this function

-0 cmd -f findwindow * Launch prompt widget to find a window of the given name
-0 cmd -f focus by click * Bring a window to the front

-0 cmd -T function * Call a function with current object as argument

-0 cmd -f get info Prints info for all groups

-0 cmd -f get state Get pickled state for restarting gtile

Output of dgtile-cmd -h

dgtile-cmd

A Rofi/dmenu interface to gtile-cmd. Excepts all arguments of gtile-cmd
(see below) .

usage: dgtile-cmd [~h] [--object OBJ_SPEC [OBJ_SPEC ...]]
[-—function FUNCTION] [--args ARGS [ARGS ...]] [-—-info]

Simple tool to expose gtile.command functionality to shell.

optional arguments:
-h, —--help show this help message and exit
—-—object OBJ_SPEC [OBJ_SPEC ...], -o OBJ_SPEC [OBJ_SPEC ...]
Specify path to object (space separated). If no
——function flag display available commands.
——function FUNCTION, -f FUNCTION
Select function to execute.

—-—args ARGS [ARGS ...], —a ARGS [ARGS ...]
Set arguments supplied to function.
—-—info, -1 With both —--object and --function args prints

documentation for function.

Examples:
dgtile—cmd
dgtile-cmd -o cmd
dgtile-cmd -o cmd -f prev_layout -i
dgtile-cmd -o cmd —-f prev_layout -a 3 # prev_layout on group 3
dgtile-cmd -o group 3 —-f focus_back

(continues on next page)

1.3. Shell commands 25

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

If both rofi and dmenu are present rofi will be selected as default, to change this_
—us --force-dmenu as the first argument.

1.3.3 igshell
In addition to the standard gshe11 shell interface, we provide a kernel capable of running through Jupyter that hooks

into the gshell client. The command structure and syntax is the same as gshell, so it is recommended you read that for
more information about that.

Dependencies

In order to run igshell, you must have ipykernel and jupyter_console. You can install the dependencies when you are
installing qgtile by running:

$ pip install gtile[ipython]

Otherwise, you can just install these two packages separately, either through PyPI or through your distribution package
manager.

Installing and Running the Kernel

Once you have the required dependencies, you can run the kernel right away by running:

’$ python3 -m libgtile.interactive.igshell_kernel

However, this will merely spawn a kernel instance, you will have to run a separate frontend that connects to this kernel.

A more convenient way to run the kernel is by registering the kernel with Jupyter. To register the kernel itself, run:

’$ python3 -m libgtile.interactive.igshell_install

If you run this as a non-root user, or pass the ——user flag, this will install to the user Jupyter kernel directory. You
can now invoke the kernel directly when starting a Jupyter frontend, for example:

’$ jupyter console —-kernel gshell

The igshell script will launch a Jupyter terminal console with the gshell kernel.

igshell vs gshell

One of the main drawbacks of running through a Jupyter kernel is the frontend has no way to query the current node
of the kernel, and as such, there is no way to set a custom prompt. In order to query your current node, you can call
pwd.

This, however, enables many of the benefits of running in a Jupyter frontend, including being able to save, run, and
re-run code cells in frontends such as the Jupyter notebook.

The Jupyter kernel also enables more advanced help, text completion, and introspection capabilities (however, these
are currently not implemented at a level much beyond what is available in the standard gshell).

26 Chapter 1. Getting started

https://pypi.python.org/pypi/ipykernel
https://pypi.python.org/pypi/jupyter_console

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

1.3.4 qtile-cmd

This is a simple tool to expose qtile.command functionality to shell. This can be used standalone or in other shell
scripts.

Examples:

Output of gtile-cmd -h

usage: gtile-cmd [-h] [-—-object OBJ_SPEC [OBJ_SPEC ...]]
[-—function FUNCTION] [--args ARGS [ARGS ...]] [-—-info]

Simple tool to expose gtile.command functionality to shell.

optional arguments:
-h, ——help show this help message and exit
—--object OBJ_SPEC [OBJ_SPEC ...], -o OBJ_SPEC [OBJ_SPEC ...]
Specify path to object (space separated). If no
——function flag display available commands.
——function FUNCTION, —-f FUNCTION
Select function to execute.
—-—args ARGS [ARGS ...], —a ARGS [ARGS ...]
Set arguments supplied to function.
With both —--object and —--function args prints
documentation for function.

-—info, -1

Examples:
gtile-cmd
gtile-cmd -o cmd
gtile-cmd -o cmd -f prev_layout -1
gtile-cmd -o cmd —-f prev_layout -a 3 # prev_layout on group 3
gtile-cmd -o group 3 —-f focus_back

Output of gtile-cmd -o group 3

-0 group 3 —f commands Returns a list of possible commands for this object
-o group 3 -f doc Returns the documentation for a specified command
—name

-0 group 3 —-f eval Evaluates code in the same context as this function

-0 group 3 —f
—one got it.
-0 group 3 —f

focus_back

focus_by_name

—nothing if the name is

-0 group 3 —f
-0 group 3 —f
-0 group 3 —f

function
info
info_by_name

—name without giving it

-0 group 3 —f
—name

-0 group 3 -f
-0 group 3 —f
-0 group 3 —f

items

next_window
prev_window
set_label

—GroupBox widget.

-0 group 3 —f

setlayout

Focus the window that had focus before the current

Focus the first window with the given name. Do,
Call a function with current object as argument
Returns a dictionary of info for this group

Get the info for the first window with the given

Returns a list of contained items for the specified
Focus the next window in group.

Focus the previous window in group.
Set the display name of current group to be used in_

(continues on next page)

1.3. Shell commands

27

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

-0 group 3 -f switch_groups
-0 group 3 —-f toscreen

-0 group 3 -f unminimize_all

*

Switch position of current group with name
Pull a group to a specified screen.
Unminimise all windows in this group

Output of gtile-cmd -o cmd

-o cmd —f
—it

-0 cmd —f
-o cmd —f
-0 cmd —f
-0 cmd —f
-o cmd —f
-0 cmd —-f
-0 cmd —f
—name

-0 cmd —f
-0 cmd —f
-o cmd —f
—name

-0 cmd —f
-o cmd —f
-0 cmd —f
-0 cmd —f
-o cmd —f

add_rule

addgroup
commands
critical
debug
delgroup
display_kb
doc

error
eval
findwindow

focus_by_click
function
get_info
get_state
get_test_data

—test_data attribute.

-0 cmd —-f
—groups
-0 cmd —f
-0 cmd —-f
-o cmd —-f
—example)
-o cmd —f
—name

-0 cmd —f
-0 cmd —f

-o cmd —-f
-0 cmd —f
-o cmd —f
-o cmd —f
-0 cmd —f
-0 cmd —f
-o cmd —f
-0 cmd —f
-0 cmd —f
-o cmd —f

-0 cmd —f

groups

hide_show_bar
info
internal_windows

items

list_widgets
next_layout
next_screen
next_urgent
pause
prev_layout
prev_screen
gtile_info
gtilecmd
remove_rule
restart
run_extension
run_extention

Add a dgroup rule, returns rule_id needed to remove
Add a group with the given name

Returns a list of possible commands for this object
Set log level to CRITICAL

Set log level to DEBUG

Delete a group with the given name

Display table of key bindings

Returns the documentation for a specified command

Set log level to ERROR
Evaluates code in the same context as this function
Launch prompt widget to find a window of the given

Bring a window to the front

Call a function with current object as argument
Prints info for all groups

Get pickled state for restarting gtile

Returns any content arbitrarily set in the self.

Return a dictionary containing information for all

Toggle visibility of a given bar

Set log level to INFO

Return info for each internal window (bars, for_
Returns a list of contained items for the specified,

List of all addressible widget names

Switch to the next layout.

Move to next screen

Focus next window with urgent hint

Drops into pdb

Switch to the previous layout.

Move to the previous screen

Returns a dictionary of info on the Qtile instance
Execute a Qtile command using the client syntax
Remove a dgroup rule by rule_id

Restart gtile

Run extensions

Deprecated alias for cmd_run_extension ()

-o cmd —-f run_external * Run external Python script
-0 cmd —f screens Return a list of dictionaries providing information
—on all screens
-0 cmd —-f shutdown Quit Qtile
-0 cmd —-f simulate_keypress x Simulates a keypress on the focused window.
-0 cmd —f spawn * Run cmd in a shell.
-0 cmd -f spawncmd x Spawn a command using a prompt widget, with tab-
—completion.

(continues on next page)
28 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

-0 cmd —f status Return "OK" if Qtile is running

-o cmd —-f switch_groups x Switch position of groupa to groupb

-o cmd —-f switchgroup * Launch prompt widget to switch to a given group to
—the current screen

-0 cmd —-f sync Sync the X display. Should only be used for
—development

-o cmd —-f to_layout_index * Switch to the layout with the given index in self.
—layouts.

-o cmd —-f to_screen x» Warp focus to screen n, where n is a 0O-based screen,
—number

-o cmd —f togroup » Launch prompt widget to move current window to a_
—given group

-0 cmd —-f tracemalloc_dump Dump tracemalloc snapshot

-0 cmd —-f tracemalloc_toggle Toggle tracemalloc status

-0 cmd —-f warning Set log level to WARNING

-0 cmd —-f windows Return info for each client window

1.3.5 qtile-run

Run a command applying rules to the new windows, ie, you can start a window in a specific group, make it floating,
intrusive, etc.

The Windows must have NET_WM_PID.

run xterm floating on group "test-group"
gtile-run —-g test-group -f xterm

1.3.6 qtile-top

Is a top like to measure memory usage of gtile’s internals.
* Built-in Extensions
* Built-in Hooks
* Built-in Layouts

* Built-in Widgets

1.4 Reference

1.4.1 Built-in Hooks

classmethod subscribe.addgroup (func)
Called when group is added

Arguments
* name of new group

classmethod subscribe.changegroup (func)
Called whenever a group change occurs

Arguments

1.4. Reference 29

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

None

classmethod subscribe.client_focus (func)
Called whenever focus changes

Arguments
* window.Window object of the new focus.

classmethod subscribe.client_killed (func)
Called after a client has been unmanaged

Arguments
* window.Window object of the killed window.

classmethod subscribe.client_managed (func)
Called after Qtile starts managing a new client

Called after a window is assigned to a group, or when a window is made static. This hook is not called for
internal windows.

Arguments
* window.Window object of the managed window

classmethod subscribe.client_mouse_enter (func)
Called when the mouse enters a client

Arguments
¢ window.Window of window entered

classmethod subscribe.client_name_updated (func)
Called when the client name changes

Arguments
* window.Window of client with updated name

classmethod subscribe.client_new (func)
Called before Qtile starts managing a new client

Use this hook to declare windows static, or add them to a group on startup. This hook is not called for internal
windows.

Arguments

* window.Window object

Examples

@libgtile.hook.subscribe.client_new
def func(c):
if c.name == "xterm":
c.togroup ("a")
elif c.name == "dzen":
c.cmd_static (0)

classmethod subscribe.client_urgent_hint_changed (func)
Called when the client urgent hint changes

Arguments

30 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

* window.Window of client with hint change

classmethod subscribe.current_screen_change (func)
Called when the current screen (i.e. the screen with focus) changes

Arguments
None

classmethod subscribe.delgroup (func)
Called when group is deleted

Arguments
* name of deleted group

classmethod subscribe.enter_chord (func)
Called when key chord begins

Arguments
¢ name of chord(mode)

classmethod subscribe.float_change (func)
Called when a change in float state is made

Arguments
None

classmethod subscribe.focus_change (func)
Called when focus is changed

Arguments
None

classmethod subscribe.group_window_add (func)
Called when a new window is added to a group

Arguments
None

classmethod subscribe.layout_change (func)
Called on layout change

Arguments
¢ layout object for new layout
» group object on which layout is changed

classmethod subscribe.leave_chord (func)
Called when key chord ends

Arguments
None

classmethod subscribe.net_wm_icon_change (func)
Called on _NET _WM_ICON chance

Arguments

* window.Window of client with changed icon

1.4. Reference 31

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

classmethod subscribe.screen_change (func)
Called when a screen is added or screen configuration is changed (via xrandr)

Common usage is simply to call gt 11le.cmd_restart () on each event (to restart qtile when there is a new
monitor):

Arguments

e xproto.randr.ScreenChangeNotify event

Examples

@libgtile.hook.subscribe.screen_change
def restart_on_randr (ev) :
libgtile.gtile.cmd_restart ()

classmethod subscribe.selection_change (func)
Called on selection change

Arguments
* name of the selection
* dictionary describing selection, containing owner and selection as keys

classmethod subscribe.selection_notify (func)
Called on selection notify

Arguments
* name of the selection
* dictionary describing selection, containing owner and selection as keys

classmethod subscribe.setgroup (func)
Called when group is changed

Arguments
None

classmethod subscribe.startup (func)
Called when qtile is started

Arguments
None

classmethod subscribe.startup_complete (func)
Called when qtile is started after all resources initialized

Arguments
None

classmethod subscribe.startup_once (func)
Called when Qtile has started on first start

This hook is called exactly once per session (i.e. not on each lazy.restart ()).
Arguments

None

32 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

classmethod subscribe.window_name_change (func)
Called whenever a windows name changes

Deprecated: use client_name_updated Arguments

None

1.4.2 Built-in Layouts

Floating

class libgtile.layout.floating.Floating (float_rules=None,

**config)

Floating layout, which does nothing with windows but handles focus order

no_reposition_match=None,

key default description
auto_float_typeg'dialog', ‘default wm types to automatically float’

'utility',

'toolbar',

'splash',

'notification'|}
border_focus "#0000££" ‘Border colour for the focused window.’
border_normal | '#000000" ‘Border colour for un-focused windows.’
border_width 1 ‘Border width.’

‘Border width for fullscreen.’
‘Border width for maximize.’
‘Name of this layout.’

fullscreen_bonder_width
max_border_width

name 'floating’

Bsp
class libgtile.layout.bsp.Bsp (**config)
This layout is inspired by bspwm, but it does not try to copy its features.

The first client occupies the entire screen space. When a new client is created, the selected space is partitioned
in 2 and the new client occupies one of those subspaces, leaving the old client with the other.

The partition can be either horizontal or vertical according to the dimensions of the current space: if its
width/height ratio is above a pre-configured value, the subspaces are created side-by-side, otherwise, they are
created on top of each other. The partition direction can be freely toggled. All subspaces can be resized and
clients can be shuffled around.

All clients are organized at the leaves of a full binary tree.

An example key configuration is:

Key ([mod], "3J", lazy.layout.down()),

Key ([mod], "k", lazy.layout.up()),

Key ([mod], "h", lazy.layout.left()),

Key ([mod], "1", lazy.layout.right()),

Key ([mod, "shift"], "J", lazy.layout.shuffle_down()),
Key ([mod, "shift"], "k", lazy.layout.shuffle_up()),
Key ([mod, "shift"], "h", lazy.layout.shuffle_left()),
Key ([mod, "shift"], "1", lazy.layout.shuffle_right()),
Key ([mod, "modl"], "j", lazy.layout.flip_down()),

Key ([mod, "modl"], "k", lazy.layout.flip_up()),

(continues on next page)

1.4. Reference 33

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

Key ([mod, "modl"], "h", lazy.layout.flip_left()),
Key ([mod, "modl"], "1", lazy.layout.flip_right()),
Key ([mod, "control"], "j", lazy.layout.grow_down()),
Key ([mod, "control™], "k", lazy.layout.grow_up()),
Key ([mod, "control"], "h", lazy.layout.grow_left()),
Key ([mod, "control"], "1", lazy.layout.grow_right()),
Key ([mod, "shift"], "n", lazy.layout.normalize()),
Key ([mod], "Return", lazy.layout.toggle_split()),
key default description
border_focus '#881111" ‘Border colour for the focused window.’
border_normal | '#220000" ‘Border colour for un-focused windows.’
border_width 2 ‘Border width.’
fair True ‘New clients are inserted in the shortest branch.’
grow_amount 10 ‘Amount by which to grow a window/column.’
lower_right True ‘New client occupies lower or right subspace.’
margin 0 ‘Margin of the layout.’
name "bsp' ‘Name of this layout.’
ratio 1.6 ‘Width/height ratio that defines the partition direction.’
Columns

class libgtile.layout.columns.Columns (**config)
Extension of the Stack layout.

The screen is split into columns, which can be dynamically added or removed. Each column can present its
windows in 2 modes: split or stacked. In split mode, all windows are presented simultaneously, spliting the
column space. In stacked mode, only a single window is presented from the stack of windows. Columns and
windows can be resized and windows can be shuffled around.

This layout can also emulate wmii’s default layout via:
layout.Columns(num_columns=1, insert_position=1)
Or the “Vertical”, and “Max”, depending on the default parameters.

An example key configuration is:

Key ([mod], 3", lazy.layout.down()),

Key ([mod], "k", lazy.layout.up()),

Key ([mod], "h", lazy.layout.left()),

Key ([mod], "1", lazy.layout.right()),

Key ([mod, "shift"], "J", lazy.layout.shuffle_down()),
Key ([mod, "shift"], "k", lazy.layout.shuffle_up()),
Key ([mod, "shift"], "h", lazy.layout.shuffle_left()),
Key ([mod, "shift"], "1", lazy.layout.shuffle_right()),
Key ([mod, "control"], "j", lazy.layout.grow_down()),
Key ([mod, "control"], "k", lazy.layout.grow_up()),
Key ([mod, "control"], "h", lazy.layout.grow_left()),
Key ([mod, "control"], "1", lazy.layout.grow_right()),
Key ([mod], "Return", lazy.layout.toggle_split()),

Key ([mod], "n", lazy.layout.normalize()),

34 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key

default

description

border_focus

'#881111"

‘Border colour for the focused window.’

border_ focus_gta#&81111"

‘Border colour for the focused window in stacked columns.’

border_normal | '#220000" ‘Border colour for un-focused windows.’

border_normal_|st#2&X0000" ‘Border colour for un-focused windows in stacked columns.’

border_ width 2 ‘Border width.’

fair False ‘Add new windows to the column with least windows.’

grow_amount 10 ‘Amount by which to grow a window/column.’

insert_positiqgn0 ‘Position relative to the current window where new ones are in-
serted (O means right above the current window, 1 means right
after).’

margin 0 ‘Margin of the layout.’

name 'columns' ‘Name of this layout.’

num_columns 2 ‘Preferred number of columns.’

split True ‘New columns presentation mode.’

wrap_focus_colufinge ‘Wrap the screen when moving focus across columns.’

wrap_focus_rowsTrue ‘Wrap the screen when moving focus across rows.’

wrap_focus_stgdcRsue ‘Wrap the screen when moving focus across stacked.’

Matrix

class libgtile.layout.matrix.Matrix (columns=2, **config)

Max

This layout divides the screen into a matrix of equally sized cells and places one window in each cell.

The

number of columns is configurable and can also be changed interactively.

key default description

border focus '#0000ff" ‘Border colour for the focused window.’
border_normal | '#000000"' ‘Border colour for un-focused windows.’
border_width 1 ‘Border width.’

margin 0 ‘Margin of the layout’

name 'matrix’' ‘Name of this layout.’

class libgtile.layout.max.Max (**config)

key default description
name 'max’ ‘Name of this layout.’
MonadTall

Maximized layout

A simple layout that only displays one window at a time, filling the screen_rect. This is suitable for use on lap-
tops and other devices with small screens. Conceptually, the windows are managed as a stack, with commands
to switch to next and previous windows in the stack.

class libgtile.layout.xmonad.MonadTall (**config)
Emulate the behavior of XMonad’s default tiling scheme.

Main-Pane:

1.4. Reference

35

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

A main pane that contains a single window takes up a vertical portion of the screen_rect based on the ratio
setting. This ratio can be adjusted with the cmd_grow_main and cmd_shrink_main or, while the main
pane is in focus, cmd_grow and cmd_shrink.

Using the cmd__f11ip method will switch which horizontal side the main pane will occupy. The main pane is
considered the “top” of the stack.

Secondary-panes:

Occupying the rest of the screen_rect are one or more secondary panes. The secondary panes will share the
vertical space of the screen_rect however they can be resized at will with the cmd_grow and cmd_shrink
methods. The other secondary panes will adjust their sizes to smoothly fill all of the space.

Panes can be moved with the cmd_shuffle_up and cmd_shuffle_down methods. As mentioned the
main pane is considered the top of the stack; moving up is counter-clockwise and moving down is clockwise.

The opposite is true if the layout is “flipped”.

| I 2 \ \ 2 \ \
\ \ \ \ \ \
\ I3 \ \ 3 \ \
| 1 \ \ \ \ 1 \
\ I 4 \ \ 4 | \
\ \ \ \ \ \
Normalizing:

To restore all client windows to their default size ratios simply use the cmd_normalize method.

Maximizing:

36

Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

To toggle a client window between its minimum and maximum sizes simply use the cmd_maximize on a
focused client.

Suggested Bindings:

Key ([modkey], "h", lazy.layout.left()),

Key ([modkey], "1", lazy.layout.right()),

Key ([modkey], "j", lazy.layout.down()),

Key ([modkey], "k", lazy.layout.up()),

Key ([modkey, "shift"], "h", lazy.layout.swap_left ())

([

([

([

([

([14

([modkey, "shift"], "1", lazy.layout.swap_right()),
Key ([modkey, "shift"], "j", lazy.layout.shuffle_down()),

([

([

([

([

([

([

Key ([modkey, "shift"], "k", lazy.layout.shuffle_up()),
Key ([modkey], "i", lazy.layout.grow()),
Key ([modkey], "m", lazy.layout.shrink()),
Key ([modkey], "n", lazy.layout.normalize()),
Key ([modkey], "o", lazy.layout.maximize()),
Key ([modkey, "shift"], "space", lazy.layout.flip()),
key default description
align 0 ‘Which side master plane will be placed (one of MonadTall.
_left orMonadTall._right)’
border_focus "#££0000" ‘Border colour for the focused window.’
border_normal | '#000000" ‘Border colour for un-focused windows.’
border_width 2 ‘Border width.’
change_ratio 0.05 ‘Resize ratio’
change_size 20 ‘Resize change in pixels’
margin 0 ‘Margin of the layout’
max_ratio 0.75 “The percent of the screen-space the master pane should occupy
at maximum.’
min_ratio 0.25 “The percent of the screen-space the master pane should occupy
at minimum.’
min_secondary_|s8Ze ‘minimum size in pixel for a secondary pane window °
name 'xmonadtall' ‘Name of this layout.’
new_at_current False ‘Place new windows at the position of the active window.’
ratio 0.5 “The percent of the screen-space the master pane should occupy
by default.
single_border_|wNadt& ‘Border width for single window’
single_margin | None ‘Margin size for single window’
MonadWide

class libgtile.layout.xmonad.MonadWide (**config)
Emulate the behavior of XMonad’s horizontal tiling scheme.

This layout attempts to emulate the behavior of XMonad wide tiling scheme.
Main-Pane:

A main pane that contains a single window takes up a horizontal portion of the screen_rect based on the ratio
setting. This ratio can be adjusted with the cmd_grow_main and cmd_shrink_main or, while the main
pane is in focus, cmd_grow and cmd_shrink.

(continues on next page)

1.4. Reference 37

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

Using the cmd__f11ip method will switch which vertical side the main pane will occupy. The main pane is
considered the “top” of the stack.

Secondary-panes:

Occupying the rest of the screen_rect are one or more secondary panes. The secondary panes will share the
horizontal space of the screen_rect however they can be resized at will with the cmd_grow and cmd_shrink
methods. The other secondary panes will adjust their sizes to smoothly fill all of the space.

Panes can be moved with the cmd_shuffle_up and cmd_shuffle_down methods. As mentioned the
main pane is considered the top of the stack; moving up is counter-clockwise and moving down is clockwise.

The opposite is true if the layout is “flipped”.

Normalizing:
To restore all client windows to their default size ratios simply use the cmd_normalize method.
Maximizing:

To toggle a client window between its minimum and maximum sizes simply use the cmd_maximize on a
focused client.

Suggested Bindings:

38

Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Key ([modkey], "h", lazy.layout.left()),
Key ([modkey], "1", lazy.layout.right()),
Key ([modkey], "j", lazy.layout.down()),
Key ([modkey], "k", lazy.layout.up()),
Key ([modkey, "shift"], "h", lazy.layout.swap_left()),
Key ([modkey, "shift"], "1", lazy.layout.swap_right()),
Key ([modkey, "shift"], "j", lazy.layout.shuffle_down()),
Key ([modkey, "shift"], "k", lazy.layout.shuffle_up()),
Key ([modkey], "i", lazy.layout.grow()),
Key ([modkey], "m", lazy.layout.shrink()),
Key ([modkey], "n", lazy.layout.normalize()),
Key ([modkey], "o", lazy.layout.maximize()),
Key ([modkey, "shift"], "space", lazy.layout.flip()),

key default description

align 0 ‘Which side master plane will be placed (one of MonadTall.

_left orMonadTall._right)’
‘Border colour for the focused window.’

‘Border colour for un-focused windows.’
‘Border width.

border_ focus "#££0000"
border_normal | '#000000"
border_width 2

change_ratio 0.05 ‘Resize ratio’

change_size 20 ‘Resize change in pixels’

margin 0 ‘Margin of the layout’

max_ratio 0.75 ‘The percent of the screen-space the master pane should occupy
at maximum.’

min_ratio 0.25 ‘The percent of the screen-space the master pane should occupy

at minimum.’
‘minimum size in pixel for a secondary pane window °

min_secondary_|s8ze

name 'xmonadtall’ ‘Name of this layout.’
new_at_currentl False ‘Place new windows at the position of the active window.’
ratio 0.5 ‘The percent of the screen-space the master pane should occupy

by default.’
‘Border width for single window’
‘Margin size for single window’

single_border_|wNomna
single_margin | None

RatioTile

class libgtile.layout.ratiotile.RatioTile (**config)
Tries to tile all windows in the width/height ratio passed in

key default description

border_focus "#0000ff" ‘Border colour for the focused window.’
border_normal | '#000000" ‘Border colour for un-focused windows.’
border_width 1 ‘Border width.’

fancy False ‘Use a different method to calculate window sizes.’
margin 0 ‘Margin of the layout’

name 'ratiotile’ ‘Name of this layout.’

ratio 1.618 ‘Ratio of the tiles’

ratio_incremert0.1 ‘Amount to increment per ratio increment’

1.4. Reference

39

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Slice
class libgtile.layout.slice.Slice (**config)
Slice layout

This layout cuts piece of screen_rect and places a single window on that piece, and delegates other window
placement to other layout

key default description
fallback <libgtile. ‘Fallback layout’
layout.
max.Max
object at
0x7fb75c4a894(0>
name 'max' ‘Name of this layout.’
role None ‘WM_WINDOW_ROLE to match’
side 'left' ‘Side of the slice (left, right, top, bottom)’
width 256 ‘Slice width’
wmclass None ‘WM_CLASS to match’
wname None ‘WM_NAME to match’

Stack
class libgtile.layout.stack.Stack (**config)
A layout composed of stacks of windows

The stack layout divides the screen_rect horizontally into a set of stacks. Commands allow you to switch
between stacks, to next and previous windows within a stack, and to split a stack to show all windows in the
stack, or unsplit it to show only the current window.

Unlike the columns layout the number of stacks is fixed.

key default description
autosplit False ‘Auto split all new stacks.’
border_focus "#0000ff" ‘Border colour for the focused window.’
border_normal | '#000000" ‘Border colour for un-focused windows.’
border_width 1 ‘Border width.
fair False ‘Add new windows to the stacks in a round robin way.’
margin 0 ‘Margin of the layout’
name 'stack' ‘Name of this layout.’
num_stacks 2 ‘Number of stacks.’

Tile

class libgtile.layout.tile.Tile (ratio=0.618, masterWindows=1, expand=True, ra-

tio_increment=0.05, add_on_top=True, add_after_last=False,
shift_windows=False, master_match=None, **config)

40 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description
border_focus '#0000ff" ‘Border colour for the focused window.’
border_normal | "#000000" ‘Border colour for un-focused windows.’
border width 1 ‘Border width.
margin 0 ‘Margin of the layout’
name 'tile' ‘Name of this layout.’

TreeTab

class libgtile.layout.tree.TreeTab (**config)
Tree Tab Layout

This layout works just like Max but displays tree of the windows at the left border of the screen_rect, which
allows you to overview all opened windows. It’s designed to work with uzbl-browser but works with other
windows too.

The panel at the left border contains sections, each of which contains windows. Initially the panel looks like flat
lists inside its section, and looks like trees if some of the windows are “moved” left or right.

For example, it looks like below with two sections initially:

fom +
|Section Foo |
o ———— +
| Window A |
e ——— +
| Window B |
fom +
| Window C \
o +

1.4. Reference 4

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description
active_bg '000080" ‘Background color of active tab’
active_fg VEEEEEL! ‘Foreground color of active tab’
bg_color '000000" ‘Background color of tabs’
border_width 2 ‘Width of the border’
font 'sans' ‘Font’
fontshadow None ‘font shadow color, default is None (no shadow)’
fontsize 14 ‘Font pixel size.’
inactive_bg '606060" ‘Background color of inactive tab’
inactive_fg VEEFEEE! ‘Foreground color of inactive tab’
level_shift 8 ‘Shift for children tabs’
margin_left 6 ‘Left margin of tab panel’
margin_y 6 ‘Vertical margin of tab panel’
name 'treetab' ‘Name of this layout.’
padding_left 6 ‘Left padding for tabs’
padding_x 6 ‘Left padding for tab label’
padding_y 2 ‘Top padding for tab label’
panel_width 150 ‘Width of the left panel’
previous_on_rnm False ‘Focus previous window on close instead of first.’
section_botton 6 ‘Bottom margin of section’
section_fg 'fEEEEL! ‘Color of section label’
section_fontsizel ‘Font pixel size of section label’
section_left 4 ‘Left margin of section label’
section_paddingd ‘Bottom of margin section label’
section_top 4 ‘Top margin of section label’
sections ['Default'] ‘Foreground color of inactive tab’
vspace 2 ‘Space between tabs’
VerticalTile

class libgtile.layout.verticaltile.VerticalTile (**config)
Tiling layout that works nice on vertically mounted monitors

The available height gets divided by the number of panes, if no pane is maximized. If one pane has been
maximized, the available height gets split in master- and secondary area. The maximized pane (master pane)
gets the full height of the master area and the other panes (secondary panes) share the remaining space. The
master area (at default 75%) can grow and shrink via keybindings.

\
\
\
\
\
| Master Area
\
\
\
\
\

(continues on next page)

42

Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

(continued from previous page)

| 4 | <= + |- \ | Secondary Area

Normal behavior. No One maximized pane in the master area maximized pane. No and two secondary panes in
the specific areas. secondary area.

77777777777777777777777777777777777 In some cases VerticalTile can be
useful on horizontal mounted

\ \
| 1 | monitors two.
| | For example if you want to have a
|-~ | webbrowser and a shell below it.
\ \
\ 2 \
\ \
Suggested keybindings:
Key ([modkey], 'j', lazy.layout.down()),
Key ([modkey], 'k', lazy.layout.up()),
Key ([modkey], 'Tab', lazy.layout.next()),
Key ([modkey, 'shift'], 'Tab', lazy.layout.next()),
Key ([modkey, 'shift'], '3', lazy.layout.shuffle_down()),
Key ([modkey, 'shift'], 'k', lazy.layout.shuffle_up()),
Key ([modkey], 'm', lazy.layout.maximize()),
Key ([modkey], 'n', lazy.layout.normalize()),
key default description
border_focus "#FF0000" ‘Border color for the focused window.’

border_normal | "#FFFFFFE" ‘Border color for un-focused windows.’

border_width 1 ‘Border width.’
margin 0 ‘Border margin.’
name 'verticaltile'| ‘Name of this layout.’

Zoomy

class libgtile.layout.zoomy.Zoomy (**config)

A layout with single active windows, and few other previews at the right

key default description

columnwidth 150 ‘Width of the right column’

margin 0 ‘Margin of the layout’

name 'zoomy' ‘Name of this layout.’

property_big '1.0" ‘Property value to set on normal window’
property_name | 'ZOOM' ‘Property to set on zoomed window’
property_small '0.1"' ‘Property value to set on zoomed window’

1.4.3 Built-in Widgets

1.4. Reference

43

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

AGroupBox

class libgtile.widget .AGroupBox (**config)
A widget that graphically displays the current group

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

border '000000" ‘group box border color’

borderwidth 3 ‘Current group border width’

center_aligned True ‘center-aligned group box’

fmt "} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.

foreground U i ‘Foreground colour’

margin 3 ‘Margin inside the box’

margin_x None “X Margin. Overrides ‘margin’ if set”

margin_y None “Y Margin. Overrides ‘margin’ if set”

markup True ‘Whether or not to use pango markup’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.’

padding_x None “X Padding. Overrides ‘padding’ if set”

padding_y None “Y Padding. Overrides ‘padding’ if set”
Backlight

class libgtile.widget.Backlight (**config)
A simple widget to show the current brightness of a monitor.

If the change_command parameter is set to None, the widget will attempt to use the interface at /sys/class to
change brightness. Depending on the setup, the user may need to be added to the video group to have permission
to write to this interface. This depends on having the correct udev rules the brightness file; these are typically
installed alongside brightness tools such as brightnessctl (which changes the group to ‘video’) so installing that
is an easy way to get it working.

You can also bind keyboard shortcuts to the backlight widget with:

Supported bar orientations: horizontal only

44 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description
background None ‘Widget background color’
backlight_namg 'acpi_videoO' | ‘ACPI name of a backlight device’
brightness_file'brightness' ‘Name of file with the current brightness in

/sys/class/backlight/backlight_name’
change_command 'xbacklight ‘Execute command to change value’

-set {0}
fmt {1 ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground "fEEEEE” ‘Foreground colour’
format ' {percent: ‘Display format’
2.0%}"

markup True ‘Whether or not to use pango markup’
max_brightnesg_¥mdr brightnegs‘Name of file with the maximum brightness in

/sys/class/backlight/backlight_name’
mouse_callbacKks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
step 10 ‘Percent of backlight every scroll changed’
update_intervgl0.?2 “The delay in seconds between updates’

Battery

class libgtile.widget.Battery (**config)
A text-based battery monitoring widget currently supporting FreeBSD

Supported bar orientations: horizontal only

1.4. Reference 45

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description
background None ‘Widget background color’
battery 0 ‘Which battery should be monitored (battery number or name)’
charge_char A ‘Character to indicate the battery is charging’
discharge_chang 'V' ‘Character to indicate the battery is discharging’
empty_char 'x! ‘Character to indicate the battery is empty’
fmt {1 ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.
foreground "fEEEEE!” ‘Foreground colour’
format '{char} ‘Display format’

{percent:2.

0%}

{hour:d}:{min:{02d}

{watt:.2f}

W Al
full_char '= ‘Character to indicate the battery is full’
hide_threshold None ‘Hide the text when there is enough energy 0 <=x< 1’
low_foreground 'FF0000"' ‘Font color on low battery’
low_percentage 0.1 ‘Indicates when to use the low_foreground color 0 < x < 1’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
notify_below None ‘Send a notification below this battery level.’
padding None ‘Padding. Calculated if None.’
show_short_textTrue ‘Show “Full” or “Empty” rather than formated text’
unknown_char v ‘Character to indicate the battery status is unknown’
update_intervgl60 ‘Seconds between status updates’

Batterylcon

class libgtile.widget.BatteryIcon (**config)
Battery life indicator widget.

Supported bar orientations: horizontal only

46

Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description
background None ‘Widget background color’
battery 0 ‘Which battery should be monitored’
fmt Y} ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.
foreground R i i i o ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacKks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.
theme_path ' /home/docs/ ‘Path of the icons’

checkouts/

readthedocs.

org/

user_builds/

gtile/

checkouts/

v0.16.1/

libgtile/

resources/

battery-icons'
update_intervgl60 ‘Seconds between status updates’

BitcoinTicker

class libgtile.widget.BitcoinTicker (**config)
A bitcoin ticker widget, data provided by the coinbase.com API. Defaults to displaying currency in whatever
the current locale is. Examples:

display the average price of bitcoin in local currency
widget.BitcoinTicker ()

display it in Euros:
widget.BitcoinTicker (currency="EUR")

Supported bar orientations: horizontal only

1.4. Reference 47

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description

background None ‘Widget background color’

currency v ‘The currency the value that bitcoin is displayed in’

data None ‘Post Data’

fmt {1 ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.’

foreground 'EEEEEE” ‘Foreground colour’

headers {} ‘Extra Headers’

json True ‘Is Json?’

markup True ‘Whether or not to use pango markup’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.’

parse None ‘Parse Function’

update_intervgl600 ‘Update interval in seconds, if none, the widget updates when-
ever the event loop is idle.’

url None ‘Url’

user_agent 'Qtile’ ‘Set the user agent’

xml False ‘Is XML?”

CPU

class libgtile.widget.CPU (**config)
Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

fmt ') ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.

foreground 'fEFEEF! ‘Foreground colour’

format 'CPU ‘CPU display format’

{freg_current }JGHz
{load_percent }3"

o\

markup True ‘Whether or not to use pango markup’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.’

update_intervgll.O ‘Update interval for the CPU widget’
CPUGraph

class libgtile.widget.CPUGraph (**config)
Display CPU usage graph

Supported bar orientations: horizontal only

48 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description

background None ‘Widget background color’
border_color '215578" ‘Widget border color’

border_ width 2 ‘Widget border width’

core 'all' ‘Which core to show (all/0/1/2/...)’
fill_color '1667EB. 3" ‘Fill color for linefill graph’

frequency 1 ‘Update frequency in seconds’
graph_color '18BAEBR' ‘Graph color’

line_width 3 ‘Line width’

margin_x 3 ‘Margin X’

margin_y 3 ‘Margin Y’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’
samples 100 ‘Count of graph samples.’

start_pos '"bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill" “box’, ‘line’, ‘linefill’”

Canto

class libgtile.widget.Canto (**config)
Display RSS feeds updates using the canto console reader

Supported bar orientations: horizontal only

key default description
all format ' {number}" ‘All feeds display format’
background None ‘Widget background color’
feeds [] ‘List of feeds to display, empty for all’
fetch False ‘Whether to fetch new items on update’
fmt "} ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.
foreground "fEEEEE” ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
one_format '{name}: ‘One feed display format’
{number}"'
padding None ‘Padding. Calculated if None.
update_intervgl600 ‘Update interval in seconds, if none, the widget updates when-
ever the event loop is idle.’

CapsNumLockindicator

class libgtile.widget.CapsNumLockIndicator (**config)
Really simple widget to show the current Caps/Num Lock state.

Supported bar orientations: horizontal only

1.4. Reference 49

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description

background None ‘Widget background color’

fmt {1 ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’

foreground "EEfEEE” ‘Foreground colour’

markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_intervgl0.5 ‘Update Time in seconds.’

CheckUpdates

class libgtile.widget.CheckUpdates (**config)
Shows number of pending updates in different unix systems

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
colour_have_updafesfff’ ‘Colour when there are updates.’
colour_no_updgteBfffff’ “Colour when there’s no updates.”
custom_command None ‘Custom shell command for checking updates (counts the lines
of the output)’

display_formaty 'Updates: ‘Display format if updates available’

{updates}'
distro '"Arch' ‘Name of your distribution’
execute None ‘Command to execute on click’
fmt "} ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.
foreground "EEFEFE! ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.
restart_indicgtdt ‘Indicator to represent reboot is required. (Ubuntu only)’
update_intervgl60 ‘Update interval in seconds.’

Chord

class libgtile.widget.Chord (width=CALCULATED, **config)
Display current key chord

Supported bar orientations: horizontal only

50

Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description
background None ‘Widget background color’
chords_colors | {} “colors per chord in form of tuple (‘bg’, ‘fg’).”
fmt T} ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.
foreground R i i i o ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacKks{} ‘Dict of mouse button press callback functions.’
name_transforn <function ‘preprocessor for chord name it is pure function string -> string’
Chord.
<lambda> at
0x7fb75c4e9e18>
padding None ‘Padding. Calculated if None.

Clipboard

Display current clipbo

ard contents

Supported bar orientations: horizontal only

class libgtile.widget.Clipboard (width=CALCULATED, **config)

key default description
background None ‘Widget background color’
blacklist ['keepassx'] ‘list with blacklisted wm_class, sadly not every clipboard

window sets them, keepassx does.Clipboard contents from
blacklisted wm_classes will be replaced by the value of
blacklist_text.

blacklist_text

Thokxkkxkkkkk

‘text to display when the wm_class is blacklisted’

fmt

l{}l

‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.

foreground "fEEEEE” ‘Foreground colour’

markup True ‘Whether or not to use pango markup’

max_width 10 ‘maximum number of characters to display (None for all, useful
when width is bar.STRETCH)’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.

selection '"CLIPBOARD' ‘the selection to display(CLIPBOARD or PRIMARY)’

timeout 10 ‘Default timeout (seconds) for display text, None to keep for-

ever’

Clock

class libgtile.widget.Clock (**config)

A simple but flexible text-based clock

Supported bar orientations: horizontal only

1.4. Reference

51

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description

background None ‘Widget background color’

fmt {1 ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.’

foreground "EEfEEE” ‘Foreground colour’

format '$H:sM! ‘A Python datetime format string’

markup True ‘Whether or not to use pango markup’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.

timezone None ‘The timezone to use for this clock, either as string if pytz
or dateutil is installed (e.g. “US/Central” or anything in
/usr/share/zoneinfo), or as tzinfo (e.g. datetime.timezone.utc).
None means the system local timezone and is the default.’

update_intervgll.0 ‘Update interval for the clock’

Cmus

class libgtile.widget.Cmus (**config)

A simple Cmus widget.

Show the artist and album of now listening song and allow basic mouse control from the bar:

* toggle pause (or play if stopped) on left click;

* skip forward in playlist on scroll up;

* skip backward in playlist on scroll down.

Cmus (https://cmus.github.io) should be installed.

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

fmt {1 ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.”

foreground EEfFEF ‘Foreground colour’

markup True ‘Whether or not to use pango markup’
max_chars 0 ‘Maximum number of characters to display in widget.’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
noplay_color 'cecece' “Text colour when not playing.’

padding None ‘Padding. Calculated if None.

play_color '00££00" ‘Text colour when playing.’
update_intervdgl0.5 ‘Update Time in seconds.’

Countdown

class libgtile.widget.Countdown (**config)

A simple countdown timer text widget

52

Chapter 1. Getting started

https://cmus.github.io

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
date datetime. ‘The datetime for the endo of the countdown’
datetime (2020,
8, 12, 1, 8,
37, 69956)
fmt ') ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground 'fEFEEF! ‘Foreground colour’
format '{D}d {H}h ‘Format of the displayed text. Available variables:{D} == days,
{MIm {S}s' {H} == hours, {M} == minutes, {S} seconds.’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’
update_intervgll.O ‘Update interval in seconds for the clock’

CurrentLayout

class libgtile.widget.CurrentLayout (width=CALCULATED, **config)
Display the name of the current layout of the current group of the screen, the bar containing the widget, is on.

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

fmt ') ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’

foreground "EfEfFEE? ‘Foreground colour’

markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’

CurrentLayoutlcon

class libgtile.widget.CurrentLayoutIcon (**config)
Display the icon representing the current layout of the current group of the screen on which the bar containing
the widget is.

If you are using custom layouts, a default icon with question mark will be displayed for them. If you want to
use custom icon for your own layout, for example, FooGrid, then create a file named “layout-foogrid.png” and
place it in ~/.icons directory. You can as well use other directories, but then you need to specify those directories
in custom_icon_paths argument for this plugin.

The order of icon search is:

e dirs in custom_icon_paths config argument

1.4. Reference 53

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

e ~/icons
* built-in qtile icons

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

custom_icon_pathk ‘List of folders where to search icons beforeusing built-in icons
or icons in ~/.icons dir. This can also be used to providemissing
icons for custom layouts. Defaults to empty list.’

fmt Y} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.’

foreground "EEFEFE! ‘Foreground colour’

markup True ‘Whether or not to use pango markup’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.

scale 1 ‘Scale factor relative to the bar height. Defaults to 1°

CurrentScreen

class libgtile.widget.CurrentScreen (width=CALCULATED, **config)
Indicates whether the screen this widget is on is currently active or not

Supported bar orientations: horizontal only

key default description

active_color '00f££00" ‘Color when screen is active’

active_text A ‘Text displayed when the screen is active’
background None ‘Widget background color’

fmt {1 ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.

foreground "EEfEEE!” ‘Foreground colour’

inactive_colon '"f£0000"' ‘Color when screen is inactive’
inactive_text | 'I" ‘Text displayed when the screen is inactive’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.’

DF

class libgtile.widget .DF (**config)
Disk Free Widget
By default the widget only displays if the space is less than warn_space.

Supported bar orientations: horizontal only

54 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description

background None ‘Widget background color’

fmt {1 ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.’

foreground "EEfEEE” ‘Foreground colour’

format '"{p} ‘String format (p: partition, s: size, f: free space, uf: user free
({uf}{m}|{r:. | space, m: measure, r: ratio (uf/s))’
0f}%) "

markup True ‘Whether or not to use pango markup’

measure 'G' ‘Measurement (G, M, B)’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.’

partition VA ‘the partition to check space’

update_intervgl60 ‘The update interval.’

visible_on_wannTrue ‘Only display if warning’

warn_color '££0000" ‘Warning color’

warn_space 2 ‘Warning space in scale defined by the measure option.’

Debuginfo

class libgtile.widget.DebugInfo (**config)
Displays debugging infos about selected window

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt "} ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground "EEFEFE! ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.
GenPollText

class libgtile.widget.GenPollText (**config)
A generic text widget that polls using poll function to get the text

Supported bar orientations: horizontal only

1.4. Reference 55

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description

background None ‘Widget background color’

fmt () ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.’

foreground "EEfEEE” ‘Foreground colour’

func None ‘Poll Function’

markup True ‘Whether or not to use pango markup’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.

update_intervdgl600 ‘Update interval in seconds, if none, the widget updates when-
ever the event loop is idle.’

GenPollUrl

class libgtile.widget.GenPollUrl (**config)
A generic text widget that polls an url and parses it using parse function

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

data None ‘Post Data’

fmt Y} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.

foreground R i i o ‘Foreground colour’

headers {} ‘Extra Headers’

json True ‘Is Json?’

markup True ‘Whether or not to use pango markup’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.

parse None ‘Parse Function’

update_intervgl600 ‘Update interval in seconds, if none, the widget updates when-
ever the event loop is idle.’

url None ‘Url’

user_agent 'Qtile’ ‘Set the user agent’

xml False ‘Is XML?”

GmailChecker

class libgtile.widget.GmailChecker (**config)
A simple gmail checker. If ‘status_only_unseen’ is True - set ‘fmt’ for one argument, ex. ‘unseen: {0}’

Supported bar orientations: horizontal only

56 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description
background None ‘Widget background color’
email_path ' INBOX' ‘email_path’
fmt 'inbox[{0}1, ‘fmt’
unseen[{1}]"
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground "EEFEEE! ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.
password None ‘password’
status_only_ursBahse ‘Only show unseen messages’
update_intervgl30 ‘Update time in seconds.’
username None ‘username’
GroupBox

class libgtile.widget.GroupBox (**config)

A widget that graphically displays the current group. All groups are displayed by their label.

group is the empty string that group will not be displayed.

Supported bar orientations: horizontal only

key default description

active 'FFFFFF' ‘Active group font colour’

background None ‘Widget background color’

block_highlightNaext_ color ‘Selected group font colour’

borderwidth 3 ‘Current group border width’

center_aligned True ‘center-aligned group box’

disable_drag | False ‘Disable dragging and dropping of group names on widget’

fmt Y} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.

foreground EfEfEL’ ‘Foreground colour’

hide_unused False ‘Hide groups that have no windows and that are not displayed
on any screen.’

highlight_colgr['000000", “Active group highlight color when using ‘line’ highlight

'282828"] method.”

highlight_metHoHborder' “Method of highlighting (‘border’, ‘block’, ‘text’, or ‘line’)Uses
*_border color settings”

inactive '404040'" ‘Inactive group font colour’

invert_mouse_whealse ‘Whether to invert mouse wheel group movement’

margin 3 ‘Margin inside the box’

margin_x None “X Margin. Overrides ‘margin’ if set”

margin_y None “Y Margin. Overrides ‘margin’ if set”

markup True ‘Whether or not to use pango markup’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

Continued on next page

If the label of a

1.4. Reference

57

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Table 1 — continued from previous page

key

default

description

other_current_|

Ist4eéndbDbrder

‘Border or line colour for group on other screen when focused.’

other_screen_R

orde4040"'

‘Border or line colour for group on other screen when unfo-
cused.’

padding None ‘Padding. Calculated if None.’

padding_x None “X Padding. Overrides ‘padding’ if set”

padding_y None “Y Padding. Overrides ‘padding’ if set”

rounded True “To round or not to round box borders’

spacing None ‘Spacing between groups(if set to None, will be equal to mar-

gin_x)’

this_current_d

ckr2en5hetrder

‘Border or line colour for group on this screen when focused.’

this_screen_bqg

rf2x5578"'

‘Border or line colour for group on this screen when unfocused.’

urgent_alert_nm

ethodder'

“Method for alerting you of WM urgent hints (one of ‘border’,
‘text’, ‘block’, or ‘line’)”

urgent_border | 'FF0000"' ‘Urgent border or line color’

urgent_text 'FF0000" ‘Urgent group font color’

use_mouse_wheglTrue ‘Whether to use mouse wheel events’

visible_groupg None ‘Groups that will be visible. If set to None or [], all groups

will be visible.Visible groups are identified by name not by their
displayed label.’

HDDBusyGraph
class libgtile.widget .HDDBusyGraph (**config)
Display HDD busy time graph

Parses /sys/block/<dev>/stat file and extracts overall device 10 usage, based on io_ticks’s value. See https:
/Iwww kernel.org/doc/Documentation/block/stat.txt

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
border_color '215578" ‘Widget border color’
border_width 2 ‘Widget border width’
device 'sda’ ‘Block device to display info for’
fill color '1667EB.3"' ‘Fill color for linefill graph’
frequency 1 ‘Update frequency in seconds’
graph_color '18BAEB' ‘Graph color’
line_width 3 ‘Line width’
margin_x 3 ‘Margin X’
margin_y 3 ‘Margin Y’
mouse_callbacKks{} ‘Dict of mouse button press callback functions.’
samples 100 ‘Count of graph samples.’
start_pos '"bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill" “box’, ‘line’, ‘linefill’”
HDDGraph

class libgtile.widget .HDDGraph (**config)
Display HDD free or used space graph

58 Chapter 1. Getting started

https://www.kernel.org/doc/Documentation/block/stat.txt
https://www.kernel.org/doc/Documentation/block/stat.txt

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
border_color '215578" ‘Widget border color’
border_width 2 ‘Widget border width’
fill color '1667EB. 3" ‘Fill color for linefill graph’
frequency 1 ‘Update frequency in seconds’
graph_color '18BAEB' ‘Graph color’
line_width 3 ‘Line width’
margin_x 3 ‘Margin X’
margin_y 3 ‘Margin Y’
mouse_callbacKks{} ‘Dict of mouse button press callback functions.’
path v/ ‘Partition mount point.’
samples 100 ‘Count of graph samples.’
space_type 'used' ‘free/used’
start_pos '"bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill" “box’, ‘line’, ‘linefill’”
IdleRPG

class libgtile.widget.IdleRPG (**config)
A widget for monitoring and displaying IdleRPG stats.

display idlerpg stats for the player 'pants' on freenode's #idlerpg
widget.IdleRPG (url="http://xethron.lolhosting.net/xml.php?player=pants")

Widget requirements: xmltodict.

Supported bar orientations: horizontal only

1.4. Reference 59

https://pypi.org/project/xmltodict/

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description
background None ‘Widget background color’
data None ‘Post Data’
fmt T} ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.
foreground R i i i o ‘Foreground colour’
format 'Id1eRPG: ‘Display format’
{online}
TTL: {ttl}'
headers {} ‘Extra Headers’
json False ‘Not json :)’
markup True ‘Whether or not to use pango markup’
mouse_callbacKks{} ‘Dict of mouse button press callback functions.’
padding None ‘Padding. Calculated if None.
parse None ‘Parse Function’
update_intervgl600 ‘Update interval in seconds, if none, the widget updates when-
ever the event loop is idle.’
url None ‘Url’
user_agent 'Qtile’ ‘Set the user agent’
xml True ‘Is XML :)’

Image

class libgtile.widget.Image (length=CALCULATED, width=None, **config)
Display a PNG image on the bar

Supported bar orientations: horizontal and vertical

key default description
background None ‘Widget background color’
filename None “Image filename. Can contain ‘~’”
margin 3 ‘Margin inside the box’
margin_x None “X Margin. Overrides ‘margin’ if set”
margin_y None “Y Margin. Overrides ‘margin’ if set”
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
rotate 0.0 ‘rotate the image in degrees counter-clockwise’
scale True ‘Enable/Disable image scaling’

ImapWidget

class libgtile.widget.ImapWidget (**config)

Email IMAP widget

This widget will scan one of your imap email boxes and report the number of unseen messages present. I've
configured it to only work with imap with ssl. Your password is obtained from the Gnome Keyring.

Writing your password to the keyring initially is as simple as (changing out <userid> and <password> for your

userid and password):

1) create the file ~/.local/share/python_keyring/keyringrc.cfg with the following contents:

60

Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

2)

[backend]
default-keyring=keyring.backends.Gnome.Keyring
keyring-path=/home/<userid>/.local/share/keyring/

Execute the following python shell script once:

#!/usr/bin/env python3

password

import keyring

user = <userid>

<password>
keyring.set_password('imapwidget', user, password)

mbox names must include the path to the mbox (except for the default INBOX). So, for example if your mailroot
is ~/Maildir, and you want to look at the mailbox at HomeMail/fred, the mbox setting would be: mbox="~/
Maildir/HomeMail/fred". Note the nested sets of quotes! Labels can be whatever you choose, of course.

Widget requirements: keyring.

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

fmt "} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.

foreground R i i o ‘Foreground colour’

label ' INBOX' ‘label for display’

markup True ‘Whether or not to use pango markup’

mbox '"INBOX"' ‘mailbox to fetch’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.

server None ‘email server name’

update_intervgl600 ‘Update interval in seconds, if none, the widget updates when-
ever the event loop is idle.

user None ‘email username’

KeyboardKbdd

class libgtile.widget .KeyboardKbdd (**config)

Widget for changing keyboard layouts per window, using kbdd

kbdd should be installed and running, you can get it from: https://github.com/qnikst/kbdd

Supported bar orientations: horizontal only

1.4. Reference

61

https://pypi.org/project/keyring/
https://github.com/qnikst/kbdd

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description

background None ‘Widget background color’

colours None “foreground colour for each layouteither ‘None’ or a list of
colours.example: [“ffffff’, ‘E6FOAF’].

configured_keybbawss, 'ir'] “your predefined list of keyboard layouts.example: [‘us’, ‘ir’,
‘es’]”

fmt ') ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.’

foreground "fEfEEE! ‘Foreground colour’

markup True ‘Whether or not to use pango markup’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.’

update_intervdll ‘Update interval in seconds.’

KeyboardLayout

class libgtile.widget.KeyboardLayout (**config)
Widget for changing and displaying the current keyboard layout

It requires setxkbmap to be available in the system.

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

configured_keybbhusk] “A list of predefined keyboard layouts represented as strings.
For example: [‘us’, ‘us colemak’, ‘es’, ‘fr’].”

display_map {1 “Custom display of layout. Key should be in format ‘layout
variant’. For example: {‘us’: ‘us *, ‘It sgs’: ‘sgs’, ‘ru phonetic’:
‘ru‘y”

fmt Y} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.

foreground R i i o ‘Foreground colour’

markup True ‘Whether or not to use pango markup’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

option None “string of setxkbmap option. Ex., ‘com-
pose:menu,grp_led:scroll’”

padding None ‘Padding. Calculated if None.

update_intervgll ‘Update time in seconds.’

KhalCalendar
class libgtile.widget.KhalCalendar (**config)
Khal calendar widget

This widget will display the next appointment on your Khal calendar in the qtile status bar. Appointments within
the “reminder” time will be highlighted.

62 Chapter 1. Getting started

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Widget requirements: dateutil.

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

fmt Y} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.

foreground 'FFFF33" ‘default foreground color’

lookahead 7 ‘days to look ahead in the calendar’

markup True ‘Whether or not to use pango markup’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.

reminder_coloy 'FF0000' ‘color of calendar entries during reminder time’

remindertime 10 ‘reminder time in minutes’

update_intervgl600 ‘Update interval in seconds, if none, the widget updates when-
ever the event loop is idle.

LaunchBar
class libgtile.widget.LaunchBar (progs=None, width=CALCULATED, **config)
A widget that display icons to launch the associated command
Widget requirements: pyxdg.
Parameters

progs : a list of tuples (software_name, command_to_execute, comment), for

example:

('thunderbird', 'thunderbird -safe-mode', 'launch thunderbird in_,
—~safe mode')

('"logout', 'gshell:self.gtile.cmd_shutdown()', 'logout from gtile')

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
default_icon '/usr/share/ ‘Default icon not found’
icons/
oxygen/
256x256/
mimetypes/
application-x—executable.
png'
mouse_callbacKks{} ‘Dict of mouse button press callback functions.’
padding 2 ‘Padding between icons’

1.4. Reference 63

https://pypi.org/project/python-dateutil/
https://freedesktop.org/wiki/Software/pyxdg/

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Maildir

class libgtile.widget.Maildir (**config)
A simple widget showing the number of new mails in maildir mailboxes

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

empty_color None ‘Display color when no new mail is available’

fmt Y} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.

foreground "EEFEFE’ ‘Foreground colour’

hide_when_emptyFalse ‘Whether not to display anything if the subfolder has no new
mail’

maildir_path '~/Mail' ‘path to the Maildir folder’

markup True ‘Whether or not to use pango markup’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’

nonempty_colon None ‘Display color when new mail is available’

padding None ‘Padding. Calculated if None.

separator ' ‘the string to put between the subfolder strings.’

sub_folders [] ‘The subfolders to scan (e.g. [{“path”: “INBOX”, “label”:
“Home mail”}, {“path”: “spam”, “label”: “Home junk”}]’

subfolder_fmt | '{label}: ‘Display format for one subfolder’

{value}'

total False ‘Whether or not to sum subfolders into a grand total. The first
label will be used.’

update_intervgl600 ‘Update interval in seconds, if none, the widget updates when-
ever the event loop is idle.

Memory
class libgtile.widget.Memory (**config)
Displays memory/swap usage

MemUsed: Returns memory in use MemTotal: Returns total amount of memory MemFree: Returns amount of
memory free Buffers: Returns buffer amount Active: Returns active memory Inactive: Returns inactive memory
Shmem: Returns shared memory SwapTotal: Returns total amount of swap SwapFree: Returns amount of swap
free SwapUsed: Returns amount of swap in use

Widget requirements: psutil.

Supported bar orientations: horizontal only

64 Chapter 1. Getting started

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description

background None ‘Widget background color’

fmt {1 ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.’

foreground "EEfEEE” ‘Foreground colour’

format ' {(MemUsed}M/ ‘Formatting for field names.’

{MemTotal}lM'

markup True ‘Whether or not to use pango markup’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.

update_intervgll.O ‘Update interval for the Memory’
MemoryGraph

class libgtile.widget.MemoryGraph (**config)
Displays a memory usage graph

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’
border_color '215578" ‘Widget border color’

border_width 2 ‘Widget border width’

fill color '1667EB. 3" ‘Fill color for linefill graph’

frequency 1 ‘Update frequency in seconds’
graph_color '18BAEB' ‘Graph color’

line_width 3 ‘Line width’

margin_x 3 ‘Margin X’

margin_y 3 ‘Margin Y’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’
samples 100 ‘Count of graph samples.’

start_pos '"bottom' “Drawer starting position (‘bottom’/’top’)”
type 'linefill" “box’, ‘line’, ‘linefill’”

Mirror

class libgtile.widget.Mirror (reflection)
Supported bar orientations: horizontal and vertical

key default description
background None ‘Widget background color’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’

Moc

class libgtile.widget.Moc (**config)
A simple MOC widget.

1.4. Reference 65

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Show the artist and album of now listening song and allow basic mouse control from the bar:
* toggle pause (or play if stopped) on left click;
* skip forward in playlist on scroll up;
* skip backward in playlist on scroll down.

MOC (http://moc.daper.net) should be installed.

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

fmt "} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.

foreground "EEFEFE! ‘Foreground colour’

markup True ‘Whether or not to use pango markup’
max_chars 0 ‘Maximum number of characters to display in widget.’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
noplay_color 'cecece' ‘Text colour when not playing.’

padding None ‘Padding. Calculated if None.

play_color '00££00" ‘Text colour when playing.’
update_intervgl0.5 ‘Update Time in seconds.’

Mpd2
class libgtile.widget .Mpd2 (**config)
Mpd2 Object.
Parameters
status_format : format string to display status
For a full list of values, see: MPDClient.status() and MPDClient.currentsong()

https://musicpd.org/doc/protocol/command_reference.html#command_status https:
/lmusicpd.org/doc/protocol/tags.html

Default:

'{play_status} {artist}/{title} \
[{repeat}{random}{single} {consume} {updating_db}]"'

“"play_status’ is a string from "~ “play_states " dict

Note that the " “time’ " property of the song renamed to "~ fulltime
to prevent conflicts with status information during formating.

idle_format : format string to display status when no song is in queue.

Default:

! \

66 Chapter 1. Getting started

http://moc.daper.net
https://musicpd.org/doc/protocol/command_reference.html#command_status
https://musicpd.org/doc/protocol/tags.html
https://musicpd.org/doc/protocol/tags.html

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

idle_message : text to display instead of song information when MPD is idle. (i.e. no song in
queue)

Default:: “MPD IDLE”
prepare_status : dict of functions to replace values in status with custom characters.
f(status, key, space_element) => str

New functionality allows use of a dictionary of plain strings.

Default:

status_dict = {
'repeat': 'r',
'random': 'z',
'single': '1"',
'consume': 'c',
'updating_db': 'U'

}

format_fns : A dict of functions to format the various elements.
‘Tag’ : f(str) => str
Default:: { ‘all’: lambda s: cgi.escape(s) }

N.B. if “all’ is present, it is processed on every element of song_info before any other
formatting is done.

mouse_buttons : A dict of mouse button numbers to actions
Widget requirements: python-mpd2_.
.. _python-mpd2: https://pypi.org/project/python-mpd2/

Supported bar orientations: horizontal only

1.4. Reference 67

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key default description
background None ‘Widget background color’
color_progress None “Text color to indicate track progress.’
command <function ‘command to be executed by mapped mouse button.’
default_cmd
at
0x7£fb75bd£5950>
fmt Y} ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.
foreground "EEEEFE! ‘Foreground colour’
format_fns {'all': ‘Dictionary of format methods’
<function
<lambda> at
0x7fb75bdf59d8>}
host 'localhost’ ‘Host of mpd server’

idle_format

'{play_status}
{idle_message}

‘format for status when mpd has no playlist.’
[{repeat}{random} {single} {consume} {updating_.

do}]!

idle_message 'MPD IDLE' ‘text to display when mpd is idle.
idletimeout 5 ‘MPDClient idle command timeout’
keys {'command': ‘mouse button mapping. action -> b_num. deprecated.’

None,

'next': 5,

'previous':

4, 'stop':

3, 'toggle':

1}
markup True ‘Whether or not to use pango markup’
mouse_buttons | {} ‘b_num -> action. replaces keys.’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
no_connection | 'No ‘Text when mpd is disconnected’

connection'
padding None ‘Padding. Calculated if None.’
password None ‘Password for auth on mpd server’
play_states {'pause': ‘Play state mapping’

' 'play':

' 'stop':

'}
port 6600 ‘Port of mpd server’
prepare_statug {'consume': ‘characters to show the status of MPD’

! ,

'random':

] Z] ,

'repeat':

A\l r A\l ,

'single':

A\l 1 A\l ,

'updating_db':
IUI}

space

‘Space keeper’

status_format

'{play_status}
{artist}/
{title}

‘format for displayed song info.’

68

[{repeat}{rand

on) (5ingle] (consune) (UPEhaptér 1> Getting started

timeout

30

‘MPDClient timeout’

update_intervs

11

‘Interval of update widget’

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

Mpris
class libgtile.widget .Mpris (**config)
MPRIS player widget

A widget which displays the current track/artist of your favorite MPRIS player. It should work with all players
which implement a reasonably correct version of MPRIS, though I have only tested it with clementine.

Supported bar orientations: horizontal only

key default description
background None ‘Widget background color’
fmt "} ‘How to format the text’
font 'sans' ‘Default font’
fontshadow None ‘font shadow color, default is None(no shadow)’
fontsize None ‘Font size. Calculated if None.’
foreground "EEFEFE! ‘Foreground colour’
markup True ‘Whether or not to use pango markup’
mouse_callbacks{} ‘Dict of mouse button press callback functions.’
name 'clementine' ‘Name of the widget’
objname 'org.mpris. ‘DBUS object to connect to’

clementine'
padding None ‘Padding. Calculated if None.’
stop_pause_text'Stopped’ ‘Optional text to display when in the stopped/paused state’

Mpris2
class libgtile.widget .Mpris2 (**config)
An MPRIS 2 widget

A widget which displays the current track/artist of your favorite MPRIS player. It should work with all MPRIS
2 compatible players which implement a reasonably correct version of MPRIS, though I have only tested it with
audacious. This widget scrolls the text if neccessary and information that is displayed is configurable.

Supported bar orientations: horizontal only

1.4. Reference 69

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

key

default

description

background

None

‘Widget background color’

display_metadd

th'xesam:title’

'xesam:album’',

'xesam:artist'

14

]

‘Which metadata identifiers to display. See
/Iwww.freedesktop.org/wiki/Specifications/mpris-spec/
metadata/#index5h3 for available values’

http:

fmt ') ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.’

foreground 'EEfFEEF? ‘Foreground colour’

markup True ‘Whether or not to use pango markup’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’

name 'audacious' ‘Name of the MPRIS widget.’

objname 'org.mpris. ‘DBUS MPRIS 2 compatible player identifier- Find it out with
MediaPlayer2. | dbus-monitor - Also see: http://specifications.freedesktop.org/
audacious' mpris-spec/latest/#Bus-Name-Policy’

padding None ‘Padding. Calculated if None.

scroll_chars 30 ‘How many chars at once to display.’

scroll_intervgl0.5 ‘Scroll delay interval.’

scroll_wait_int&rvals ‘Wait x scroll_interval beforescrolling/removing text’

stop_pause_textNone ‘Optional text to display when in the stopped/paused state’

class libgtile.widget.Net (**config)

Displays interface down and up speed

Widget requirements:

psutil.

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’

fmt "} ‘How to format the text’

font 'sans' ‘Default font’

fontshadow None ‘font shadow color, default is None(no shadow)’

fontsize None ‘Font size. Calculated if None.

foreground "EEEEFE! ‘Foreground colour’

format '{interface}: | ‘Display format of down-/upload speed of given interfaces’
{down} (7T
{up}'

interface None ‘List of interfaces or single NIC as string to monitor, None to

displays all active NICs combined’

markup True ‘Whether or not to use pango markup’

mouse_callbacKks{} ‘Dict of mouse button press callback functions.’

padding None ‘Padding. Calculated if None.’

update_intervgll ‘The update interval.’

use_bits False ‘Use bits instead of bytes per second?’

Chapter 1. Getting started

http://www.freedesktop.org/wiki/Specifications/mpris-spec/metadata/#index5h3
http://www.freedesktop.org/wiki/Specifications/mpris-spec/metadata/#index5h3
http://www.freedesktop.org/wiki/Specifications/mpris-spec/metadata/#index5h3
http://specifications.freedesktop.org/mpris-spec/latest/#Bus-Name-Policy
http://specifications.freedesktop.org/mpris-spec/latest/#Bus-Name-Policy
https://pypi.org/project/psutil/

Qtile Documentation, Release 0.16.2.dev0+g04be66.d20200812

NetGraph

class libgtile.widget .NetGraph (**config)
Display a network usage graph

Supported bar orientations: horizontal only

key default description

background None ‘Widget background color’
bandwidth_typg 'down' ‘down(load)/up(load)’

border_ color '215578" ‘Widget border color’

border_width 2 ‘Widget border width’

fill_color '1667EB. 3" ‘Fill color for linefill graph’

frequency 1 ‘Update frequency in seconds’

graph_color '18BAEBR' ‘Graph color’

interface 'auto' “Interface to display info for (‘auto’ for detection)”
line_width 3 ‘Line width’

margin_x 3 ‘Margin X’

margin_y 3 ‘Margin Y’

mouse_callbacks{} ‘Dict of mouse button press callback functions.’
samples 100 ‘Count of graph samples.’

start_pos "bottom' “Drawer starting position (‘bottom’/’top’)”
type '"linefill" “box’, ‘line’, ‘linefill’”

Notify

class libgtile.widget.Notify (width=CALCULATED, **config)
A notify widget

Supported bar orientations: horizontal only

key default description
audiofile None ‘Audiofile played dur