
Qtile Documentation
Release 0.10.3

Aldo Cortesi

December 25, 2015





Contents

1 Getting started 1
1.1 Installing Qtile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Commands and scripting 15
2.1 Commands API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 qsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Getting involved 21
3.1 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Hacking on Qtile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Miscellaneous 27
4.1 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

i



ii



CHAPTER 1

Getting started

1.1 Installing Qtile

1.1.1 Distro Guides

Below are the preferred installation methods for specific distros. If you are running something else, please see In-
stalling From Source.

Installing on Arch Linux

Qtile is available on the AUR as:

• qtile stable branch(release) of qtile.

• qtile-python3-git development branch of qtile.

Using an AUR Helper

The preferred way to install Qtile is with an AUR helper. For example, if you use yaourt:

# for release
yaourt -S qtile
# or for develop
yaourt -S qtile-python3-git

Using pacman

sudo pacman -S python pango python-cairocffi python-xcffib

Also you need one qtile package from the AUR:

• qtile-python3-git

• qtile

1

https://wiki.archlinux.org/index.php/AUR
https://aur.archlinux.org/packages/qtile/
https://aur.archlinux.org/packages/qtile-python3-git/
http://wiki.archlinux.org/index.php/AUR_Helpers
http://wiki.archlinux.org/index.php/Yaourt
https://aur.archlinux.org/packages/qtile-python3-git/
https://aur.archlinux.org/packages/qtile/


Qtile Documentation, Release 0.10.3

Installing AUR packages without helper

To install these packages, download the .tar.gz’s from the AUR and run the following commands for each:

tar -xvzf <packagename>-<vernum>.tar.gz
cd <packagename>-<vernum>
makepkg -s
sudo pacman -U <packagename>

Please see the Arch Wiki for more information on installing packages from the AUR:

http://wiki.archlinux.org/index.php/AUR#Installing_packages

Installing on Fedora

Stable versions of Qtile are currently packaged for current versions of Fedora. To install this package, run:

dnf -y install qtile

Installing on Funtoo

Latest versions of Qtile are available on Funtoo with Python 2.7, 3.3, and 3.4 implementations. To install it, run:

emerge -av x11-wm/qtile

You can also install the development version from GitHub:

echo "x11-wm/qtile-9999 **" >> /etc/portage/package.accept_keywords
emerge -av qtile

Customize

You can customize your installation with the following useflags:

• dbus

• widget-google-calendar

• widget-imap

• widget-keyboardkbdd

• widget-launchbar

• widget-mpd

• widget-mpris

• widget-wlan

The dbus useflag is enabled by default. Disable it only if you know what it is and know you don’t use/need it.

All widget-* useflags are disabled by default because these widgets require additional dependencies while not everyone
will use them. Enable only widgets you need to avoid extra dependencies thanks to these useflags.

Visit Funtoo Qtile documentation for more details on Qtile installation on Funtoo.

2 Chapter 1. Getting started

http://wiki.archlinux.org/index.php/AUR#Installing_packages
http://www.funtoo.org/Package:Qtile


Qtile Documentation, Release 0.10.3

Installing on Ubuntu

There are no packages for currently released versions of qtile. However, on wily and above (and debian unstable), the
dependencies are available via:

sudo apt-get install python3-xcffib python3-cairocffi

And with those, qtile can be built via a normal python setup.py install.

PPA on Launchpad

Packages for old versions are available for 11.10 (Oneiric Ocelot), 12.04 (Precise Pangolin), 12.10 (Quantal Quetzal),
13.04 (Raring Ringtail), 13.10 (Saucy Salamander), 14.04 (Trusty Tahr), and 14.10 (Utopic Unicorn).

sudo apt-add-repository ppa:tycho-s/ppa
sudo apt-get update
sudo apt-get install qtile

1.1.2 Installing From Source

First, you need to install all of Qtile’s dependencies (although some are optional/not needed depending on your Python
version, as noted below).

xcffib

Qtile uses xcffib as an XCB binding, which has its own instructions for building from source. However, if you’d
like to skip building it, you can install its dependencies, you will need libxcb and libffi with the associated headers
(libxcb-render0-dev and libffi-dev on Ubuntu), and install it via PyPI:

pip install xcffib

cairocffi

Qtile uses cairocffi with XCB support via xcffib. You’ll need libcairo2, the underlying library used by the binding.
You should be sure before you install cairocffi that xcffib has been installed, otherwise the needed cairo-xcb bindings
will not be built. Once you’ve got the dependencies installed, you can use the latest version on PyPI:

pip install cairocffi

pangocairo

You’ll also need libpangocairo, which on Ubuntu can be installed via sudo apt-get install
libpangocairo-1.0-0. Qtile uses this to provide text rendering (and binds directly to it via cffi with a small
in-tree binding).

asyncio/trollius

Qtile uses the asyncio module as introduced in PEP 3156 for its event loop. Based on your Python version, there are
different ways to install this:

• Python >=3.4: The asyncio module comes as part of the standard library, so there is nothing more to install.

1.1. Installing Qtile 3

https://github.com/tych0/xcffib#installation
https://pythonhosted.org/cairocffi/overview.html
http://python.org/dev/peps/pep-3156/
https://docs.python.org/3/library/asyncio.html


Qtile Documentation, Release 0.10.3

• Python 3.3: This has all the infastructure needed to implement PEP 3156, but the asyncio module must be
installed from the Tulip project. This is done by calling:

pip install asyncio

Alternatively, you can install trollius (see next point).

• Python 2 and <=3.2 (and 3.3 without asyncio): You will need to install trollius, which backports the asyncio
module functionality to work without the infastructure introduced in PEP 3156. You can install this from PyPI:

pip install trollius

dbus/gobject

Until someone comes along and writes an asyncio-based dbus library, qtile will depend on python-dbus to interact
with dbus. This means that if you want to use things like notification daemon or mpris widgets, you’ll need to install
python-gobject and python-dbus. Qtile will run fine without these, although it will emit a warning that some things
won’t work.

Qtile

With the dependencies in place, you can now install qtile:

git clone git://github.com/qtile/qtile.git
cd qtile
sudo python setup.py install

Stable versions of Qtile can be installed from PyPI:

pip install qtile

As long as the necessary libraries are in place, this can be done at any point, however, it is recommended that you first
install xcffib to ensure the cairo-xcb bindings are built (see above).

1.2 Configuration

Qtile is configured in Python. A script (~/.config/qtile/config.py by default) is evaluated, and a small set
of configuration variables are pulled from its global namespace.

1.2.1 Configuration lookup order

Qtile looks in the following places for a configuration file, in order:

• The location specified by the -c argument.

• $XDG_CONFIG_HOME/qtile/config.py, if it is set

• ~/.config/qtile/config.py

• It reads the module libqtile.resources.default_config, included by default with every Qtile in-
stallation.

4 Chapter 1. Getting started

https://code.google.com/p/tulip/
http://trollius.readthedocs.org/


Qtile Documentation, Release 0.10.3

1.2.2 Default Configuration

The default configuration is invoked when qtile cannot find a configuration file. In addition, if qtile is restarted via
qsh, qtile will load the default configuration if the config file it finds has some kind of error in it. The documentation
below describes the configuration lookup process, as well as what the key bindings are in the default config.

The default config is not intended to be sutiable for all users; it’s mostly just there so qtile does /something/ when fired
up, and so that it doesn’t crash and cause you to lose all your work if you reload a bad config.

Key Bindings

The mod key for the default config is mod4, which is typically bound to the “Super” keys, which are things like the
windows key and the mac command key. The basic operation is:

• mod + k or mod + j: switch windows on the current stack

• mod + <space>: put focus on the other pane of the stack (when in stack layout)

• mod + <tab>: switch layouts

• mod + w: close window

• mod + <ctrl> + r: restart qtile with new config

• mod + <group name>: switch to that group

• mod + <shift> + <group name>: send a window to that group

• mod + <enter>: start xterm

• mod + r: start a little prompt in the bar so users can run arbitrary commands

The default config defines one screen and 8 groups, one for each letter in asdfuiop. It has a basic bottom bar that
includes a group box, the current window name, a little text reminder that you’re using the default config, a system
tray, and a clock.

The default configuration has several more advanced key combinations, but the above should be enough for basic
usage of qtile.

Mouse Bindings

By default, holding your mod key and clicking (and holding) a window will allow you to drag it around as a floating
window.

1.2.3 Configuration variables

A Qtile configuration consists of a file with a bunch of variables in it, which qtile imports and then runs as a python
file to derive its final configuration. The documentation below describes the most common configuration variables;
more advanced configuration can be found in the qtile-examples repository, which includes a number of real-world
configurations that demonstrate how you can tune Qtile to your liking. (Feel free to issue a pull request to add your
own configuration to the mix!)

Groups

A group is a container for a bunch of windows, analogous to workspaces in other window managers. Each client
window managed by the window manager belongs to exactly one group. The groups config file variable should be
initialized to a list of DGroup objects.

1.2. Configuration 5

https://github.com/qtile/qtile/blob/develop/libqtile/resources/default_config.py
https://github.com/qtile/qtile-examples


Qtile Documentation, Release 0.10.3

DGroup objects provide several options for group configuration. Groups can be configured to show and hide them-
selves when they’re not empty, spawn applications for them when they start, automatically acquire certain groups, and
various other options.

class libqtile.config.Match(title=None, wm_class=None, role=None, wm_type=None,
wm_instance_class=None, net_wm_pid=None)

Match for dynamic groups It can match by title, class or role.

__init__(title=None, wm_class=None, role=None, wm_type=None, wm_instance_class=None,
net_wm_pid=None)

Match supports both regular expression objects (i.e. the result of re.compile()) or strings (match as
a “include” match). If a window matches any of the things in any of the lists, it is considered a match.

Parameters

• title – things to match against the title (WM_NAME)

• wm_class – things to match against the second string in WM_CLASS atom

• role – things to match against the WM_ROLE atom

• wm_type – things to match against the WM_TYPE atom

• wm_instance_class – things to match against the first string in WM_CLASS atom

• net_wm_pid – things to match against the _NET_WM_PID atom (only int allowed in
this rule)

class libqtile.config.Group(name, matches=None, exclusive=False, spawn=None, layout=None,
layouts=None, persist=True, init=True, layout_opts=None,
screen_affinity=None, position=9223372036854775807)

Represents a “dynamic” group. These groups can spawn apps, only allow certain Matched windows to be on
them, hide when they’re not in use, etc.

__init__(name, matches=None, exclusive=False, spawn=None, layout=None, lay-
outs=None, persist=True, init=True, layout_opts=None, screen_affinity=None, posi-
tion=9223372036854775807)

Parameters

• name (string) – the name of this group

• matches (default None) – list of Match objects whose windows will be assigned to this
group

• exclusive (boolean) – when other apps are started in this group, should we allow them
here or not?

• spawn (string or list of strings) – this will be exec() d when the group is created, you
can pass either a program name or a list of programs to exec()

• layout (string) – the default layout for this group (e.g. ‘max’ or ‘stack’)

• layouts (list) – the group layouts list overriding global layouts

• persist (boolean) – should this group stay alive with no member windows?

• init (boolean) – is this group alive when qtile starts?

• position (int) – group position

libqtile.dgroups.simple_key_binder(mod, keynames=None)
Bind keys to mod+group position or to the keys specified as second argument.

6 Chapter 1. Getting started



Qtile Documentation, Release 0.10.3

Example

from libqtile.config import Group, Match
groups = [

Group("a"),
Group("b"),
Group("c", matches=[Match(wm_class=["Firefox"])]),

]

# allow mod3+1 through mod3+0 to bind to groups; if you bind your groups
# by hand in your config, you don't need to do this.
from libqtile.dgroups import simple_key_binder
dgroups_key_binder = simple_key_binder("mod3")

Keys

The keys variable defines Qtile’s key bindings. Individual key bindings are defined with libqtile.config.Key
as demonstrated in the following example. Note that you may specify more than one callback functions.

from libqtile.config import Key

keys = [
# Pressing "Meta + Shift + a".
Key(["mod4", "shift"], "a", callback, ...),

# Pressing "Control + p".
Key(["control"], "p", callback, ...),

# Pressing "Meta + Tab".
Key(["mod4", "mod1"], "Tab", callback, ...),

]

The above may also be written more concisely with the help of the EzKey helper class. The following example is
functionally equivalent to the above:

from libqtile.config import EzKey as Key

keys = [
Key("M-S-a", callback, ...),
Key("C-p", callback, ...),
Key("M-A-<Tab>", callback, ...),

]

The EzKey modifier keys (i.e. MASC) can be overwritten through the EzKey.modifier_keys dictionary. The
defaults are:

modifier_keys = {
'M': 'mod4',
'A': 'mod1',
'S': 'shift',
'C': 'control',

}

1.2. Configuration 7



Qtile Documentation, Release 0.10.3

The command.lazy object

command.lazy is a special helper object to specify a command for later execution. This object acts like the root
of the object graph, which means that we can specify a key binding command with the same syntax used to call the
command through a script or through qsh.

Example
from libqtile.config import Key
from libqtile.command import lazy

keys = [
Key(

["mod1"], "k",
lazy.layout.down()

),
Key(

["mod1"], "j",
lazy.layout.up()

)
]

On most systems mod1 is the Alt key - you can see which modifiers, which are enclosed in a list, map to which keys
on your system by running the xmodmap command. This example binds Alt-k to the “down” command on the
current layout. This command is standard on all the included layouts, and switches to the next window (where “next”
is defined differently in different layouts). The matching “up” command switches to the previous window.

Modifiers include: “shift”, “lock”, “control”, “mod1”, “mod2”, “mod3”, “mod4”, and “mod5”. They can be used in
combination by appending more than one modifier to the list:

Key(
["mod1", "control"], "k",
lazy.layout.shuffle_down()

)

Lazy functions

This is overview of the commonly used functions for the key bindings.

General functions

function description
lazy.spawn("application")) Run the application
lazy.spawncmd()) Open command prompt on the bar. See prompt widget.
lazy.restart()) Restart Qtile and reload its config. It won’t close your windows
lazy.shutdown()) Close the whole Qtile

8 Chapter 1. Getting started



Qtile Documentation, Release 0.10.3

Group functions

function description
lazy.next_layout()) Use next layout on the actual group
lazy.prev_layout()) Use previous layout on the actual group
lazy.screen.next_group()) Move to the group on the right
lazy.screen.prev_group()) Move to the group on the left
lazy.screen.togglegroup()) Move to the last visited group
lazy.group["group_name"].toscreen())Move to the group called group_name
lazy.layout.increase_ratio() Incrase the space for master window at the expense of slave

windows
lazy.layout.decrease_ratio() Decrease the space for master window in the advantage of slave

windows

Window functions

function description
lazy.window.kill()) Close the focused window
lazy.layout.next()) Switch window focus to other pane(s) of stack
lazy.window.togroup("group_name") Move focused window to the group called group_name
lazy.window.toggle_floating() Put the focused window to/from floating mode
lazy.window.toggle_fullscreen() Put the focused window to/from fullscreen mode

Special keys These are most commonly used special keys. For complete list please see the code. You can create bind-
ings on them just like for the regular keys. For example Key(["mod1"], "F4", lazy.window.kill()).

Return
BackSpace
Tab
space
Home, End
Left, Up, Right, Down
F1, F2, F3, ...

XF86AudioRaiseVolume
XF86AudioLowerVolume
XF86AudioMute
XF86AudioNext
XF86AudioPrev
XF86MonBrightnessUp
XF86MonBrightnessDown

Layouts

A layout is an algorithm for laying out windows in a group on your screen. Since Qtile is a tiling window manager,
this usually means that we try to use space as efficiently as possible, and give the user ample commands that can be
bound to keys to interact with layouts.

The layouts variable defines the list of layouts you will use with Qtile. The first layout in the list is the default. If
you define more than one layout, you will probably also want to define key bindings to let you switch to the next and
previous layouts.

See Built-in Layouts for a listing of available layouts.

1.2. Configuration 9

https://github.com/qtile/qtile/blob/develop/libqtile/xkeysyms.py


Qtile Documentation, Release 0.10.3

Example

from libqtile import layout
layouts = [

layout.Max(),
layout.Stack(stacks=2)

]

Mouse

The mouse config file variable defines a set of global mouse actions, and is a list of Click and Drag objects, which
define what to do when a window is clicked or dragged.

Example

from libqtile.config import Click, Drag
mouse = [

Drag([mod], "Button1", lazy.window.set_position_floating(),
start=lazy.window.get_position()),

Drag([mod], "Button3", lazy.window.set_size_floating(),
start=lazy.window.get_size()),

Click([mod], "Button2", lazy.window.bring_to_front())
]

The above example can also be written more concisely with the help of the EzClick and EzDrag helpers:

from libqtile.config import EzClick as EzClick, EzDrag as Drag

mouse = [
Drag("M-1", lazy.window.set_position_floating(),

start=lazy.window.get_position()),
Drag("M-3", lazy.window.set_size_floating(),

start=lazy.window.get_size()),
Click("M-2", lazy.window.bring_to_front())

]

Screens

The screens configuration variable is where the physical screens, their associated bars, and the widgets con-
tained within the bars are defined.

See Built-in Widgets for a listing of available widgets.

Example

Tying together screens, bars and widgets, we get something like this:

from libqtile.config import Screen
from libqtile import bar, widget

screens = [
Screen(

bottom=bar.Bar([

10 Chapter 1. Getting started



Qtile Documentation, Release 0.10.3

widget.GroupBox(),
widget.WindowName()
], 30),

),
Screen(

bottom=bar.Bar([
widget.GroupBox(),
widget.WindowName()
], 30),

)
]

Bars support background colors and gradients, e.g. bar.Bar(..., background="#000000") will give you
a black back ground (the default), while bar.Bar(..., background=["#000000", "#FFFFFF"]) will
give you a background that fades from black to white.

Third-party bars

There might be some reasons to use third-party bars. For instance you can come from another window manager and
you have already configured dzen2, xmobar, or something else. They definitely can be used with Qtile too. In fact,
any additional configurations aren’t needed. Just run the bar and qtile will adapt.

Hooks

Qtile provides a mechanism for subscribing to certain events in libqtile.hook. To subscribe to a hook in your
configuration, simply decorate a function with the hook you wish to subscribe to.

See Built-in Hooks for a listing of available hooks.

Examples

Automatic floating dialogs Let’s say we wanted to automatically float all dialog windows (this code is not actually
necessary; Qtile floats all dialogs by default). We would subscribe to the client_new hook to tell us when a new
window has opened and, if the type is “dialog”, as can set the window to float. In our configuration file it would look
something like this:

from libqtile import hook

@hook.subscribe.client_new
def floating_dialogs(window):

dialog = window.window.get_wm_type() == 'dialog'
transient = window.window.get_wm_transient_for()
if dialog or transient:

window.floating = True

A list of available hooks can be found in the Built-in Hooks reference.

Autostart If you want to run commands or spawn some applications when Qtile starts, you’ll want to look at the
startup and startup_once hooks. startup is emitted every time Qtile starts (including restarts), whereas
startup_once is only emitted on the very first startup.

Let’s create a file ~/.config/qtile/autostart.sh that will set our desktop wallpaper and start a few pro-
grams when Qtile first runs.

1.2. Configuration 11



Qtile Documentation, Release 0.10.3

#!/bin/sh
feh --bg-scale ~/images/wallpaper.jpg &
pidgin &
dropbox start &

We can then subscribe to startup_once to run this script:

import os
import subprocess

@hook.subscribe.startup_once
def autostart():

home = os.path.expanduser('~')
subprocess.call([home + '/.config/qtile/autostart.sh'])

In addition to the above variables, there are several other boolean configuration variables that control specific aspects
of Qtile’s behavior:

variable de-
fault

description

fol-
low_mouse_focus

False Controls whether or not focus follows the mouse around as it moves across windows in a
layout.

bring_front_clickFalse When clicked, should the window be brought to the front or not. (This sets the X Stack
Mode to Above.)

cursor_warp False If true, the cursor follows the focus as directed by the keyboard, warping to the center of
the focused window.

auto_fullscreen True If a window requests to be fullscreen, it is automatically fullscreened. Set this to false if
you only want windows to be fullscreen if you ask them to be.

1.2.4 Testing your configuration

The best way to test changes to your configuration is with the provided Xephyr script. This will run Qtile with your
config.py inside a nested X server and prevent your running instance of Qtile from crashing if something goes
wrong.

See Hacking Qtile for more information on using Xephyr.

1.2.5 Starting Qtile

There are several ways to start Qtile. The most common way is via an entry in your X session manager’s menu. The
default Qtile behavior can be invoked by creating a qtile.desktop file in /usr/share/xsessions.

A second way to start Qtile is a custom X session. This way allows you to invoke Qtile with custom arguments, and
also allows you to do any setup you want (e.g. special keyboard bindings like mapping caps lock to control, setting
your desktop background, etc.) before Qtile starts. If you’re using an X session manager, you still may need to create
a custom.desktop file similar to the qtile.desktop file above, but with Exec=/etc/X11/xsession.
Then, create your own ~/.xsession. There are several examples of user defined xsession s in the qtile-examples
repository.

Finally, if you’re a gnome user, you can start integrate Qtile into Gnome’s session manager and use gnome as usual:

Running Inside Gnome

Add the following snippet to your Qtile configuration. As per this page, it registers Qtile with gnome-session. Without
it, a “Something has gone wrong!” message shows up a short while after logging in. dbus-send must be on your

12 Chapter 1. Getting started

https://github.com/qtile/qtile/blob/master/resources/qtile.desktop
https://github.com/qtile/qtile-examples
https://wiki.gnome.org/Projects/SessionManagement/GnomeSession#A3._Register


Qtile Documentation, Release 0.10.3

$PATH.

import subprocess
import os

@hook.subscribe.startup
def dbus_register():

x = os.environ['DESKTOP_AUTOSTART_ID']
subprocess.Popen(['dbus-send',

'--session',
'--print-reply=string',
'--dest=org.gnome.SessionManager',
'/org/gnome/SessionManager',
'org.gnome.SessionManager.RegisterClient',
'string:qtile',
'string:' + x])

This adds a new entry “Qtile GNOME” to GDM’s login screen.

$ cat /usr/share/xsessions/qtile_gnome.desktop
[Desktop Entry]
Name=Qtile GNOME
Comment=Tiling window manager
TryExec=/usr/bin/gnome-session
Exec=gnome-session --session=qtile
Type=XSession

The custom session for gnome-session.

$ cat /usr/share/gnome-session/sessions/qtile.session
[GNOME Session]
Name=Qtile session
RequiredComponents=qtile;gnome-settings-daemon;

So that Qtile starts automatically on login.

$ cat /usr/share/applications/qtile.desktop
[Desktop Entry]
Type=Application
Encoding=UTF-8
Name=Qtile
Exec=qtile
NoDisplay=true
X-GNOME-WMName=Qtile
X-GNOME-Autostart-Phase=WindowManager
X-GNOME-Provides=windowmanager
X-GNOME-Autostart-Notify=false

The above does not start gnome-panel. Getting gnome-panel to work requires some extra Qtile configuration, mainly
making the top and bottom panels static on panel startup and leaving a gap at the top (and bottom) for the panel
window.

You might want to add keybindings to log out of the GNOME session.

Key([mod, 'control'], 'l', lazy.spawn('gnome-screensaver-command -l')),
Key([mod, 'control'], 'q', lazy.spawn('gnome-session-quit --logout --no-prompt')),
Key([mod, 'shift', 'control'], 'q', lazy.spawn('gnome-session-quit --power-off')),

The above apps need to be in your path (though they are typically installed in /usr/bin, so they probably are if
they’re installed at all).

1.2. Configuration 13



Qtile Documentation, Release 0.10.3

14 Chapter 1. Getting started



CHAPTER 2

Commands and scripting

2.1 Commands API

Qtile’s command API is based on a graph of objects, where each object has a set of associated commands. The graph
and object commands are used in a number of different places:

• Commands can be bound to keys in the Qtile configuration file.

• Commands can be called through qsh, the Qtile shell.

• Commands can be called from a script to interact with Qtile from Python.

If the explanation below seems a bit complex, please take a moment to explore the API using the qsh command shell.
Command lists and detailed documentation can be accessed from its built-in help command.

2.1.1 Object Graph

The objects in Qtile’s object graph come in seven flavours, matching the seven basic components of the window
manager: layouts, windows, groups, bars, widgets, screens, and a special root node. Objects are
addressed by a path specification that starts at the root, and follows the edges of the graph. This is what the graph
looks like:

15



Qtile Documentation, Release 0.10.3

root

bar

group

layout

screen

widget

window

Each arrow can be read as “holds a reference to”. So, we can see that a widget object holds a reference to objects of
type bar, screen and group. Lets start with some simple examples of how the addressing works. Which particular
objects we hold reference to depends on the context - for instance, widgets hold a reference to the screen that they
appear on, and the bar they are attached to.

Lets look at an example, starting at the root node. The following script runs the status command on the root node,
which, in this case, is represented by the Client object:

from libqtile.command import Client
c = Client()
print c.status()

From the graph, we can see that the root node holds a reference to group nodes. We can access the “info” command
on the current group like so:

c.group.info()

To access a specific group, regardless of whether or not it is current, we use the Python containment syntax. This

16 Chapter 2. Commands and scripting



Qtile Documentation, Release 0.10.3

command sends group “b” to screen 1:

c.group["b"].to_screen(1)

The current group, layout, screen and window can be accessed by simply leaving the key specifier out. The
key specifier is mandatory for widget and bar nodes.

We can now drill down deeper in the graph. To access the screen currently displaying group “b”, we can do this:

c.group["b"].screen.info()

Be aware, however, that group “b” might not currently be displayed. In that case, it has no associated screen, the path
resolves to a non-existent node, and we get an exception:

libqtile.command.CommandError: No object screen in path 'group['b'].screen'

The graph is not a tree, since it can contain cycles. This path (redundantly) specifies the group belonging to the screen
that belongs to group “b”:

c.group["b"].screen.group()

2.1.2 Keys

The key specifier for the various object types are as follows:

Object Key Optional? Example
bar “top”, “bottom” No

c.screen.bar[”bottom”]

group Name string Yes

c.group[”one”]
c.group

layout Integer offset Yes

c.layout[2]
c.layout

screen Integer offset Yes

c.screen[1]
c.screen

widget Widget name No

c.widget[”textbox”]

window Integer window ID Yes

c.window[123456]
c.window

2.1. Commands API 17



Qtile Documentation, Release 0.10.3

2.2 Scripting

2.2.1 Client-Server Scripting Model

Qtile has a client-server control model - the main Qtile instance listens on a named pipe, over which marshalled
command calls and response data is passed. This allows Qtile to be controlled fully from external scripts. Remote
interaction occurs through an instance of the libqtile.command.Client class. This class establishes a connec-
tion to the currently running instance of Qtile, and sources the user’s configuration file to figure out which commands
should be exposed. Commands then appear as methods with the appropriate signature on the Client object. The
object hierarchy is described in the Commands API section of this manual. Full command documentation is available
through the Qtile Shell.

2.2.2 Example

Below is a very minimal example script that inspects the current qtile instance, and returns the integer offset of the
current screen.

from libqtile.command import Client
c = Client()
print c.screen.info()["index"]

2.3 qsh

The Qtile command shell is a command-line shell interface that provides access to the full complement of Qtile
command functions. The shell features command name completion, and full command documentation can be accessed
from the shell itself. The shell uses GNU Readline when it’s available, so the interface can be configured to, for
example, obey VI keybindings with an appropriate .inputrc file. See the GNU Readline documentation for more
information.

2.3.1 Navigating the Object Graph

The shell presents a filesystem-like interface to the object graph - the builtin “cd” and “ls” commmands act like their
familiar shell counterparts:

> ls
layout/ widget/ screen/ bar/ window/ group/

> cd bar

bar> ls
bottom/

bar> cd bottom

bar['bottom']> ls
screen/

bar['bottom']> cd ../..

> ls
layout/ widget/ screen/ bar/ window/ group/

18 Chapter 2. Commands and scripting



Qtile Documentation, Release 0.10.3

Note that the shell provides a “short-hand” for specifying node keys (as opposed to children). The following is a valid
shell path:

> cd group/4/window/31457314

The command prompt will, however, always display the Python node path that should be used in scripts and key
bindings:

group['4'].window[31457314]>

2.3.2 Documentation

The shell help provides the canonical documentation for the Qtile API:

> cd layout/1

layout[1]> help
help command -- Help for a specific command.

Builtins:
=========
cd exit help ls q quit

Commands for this object:
=========================
add commands current delete doc down get
info items next previous rotate shuffle_down shuffle_up
toggle_split up

layout[1]> help previous
previous()
Focus previous stack.

2.3. qsh 19



Qtile Documentation, Release 0.10.3

20 Chapter 2. Commands and scripting



CHAPTER 3

Getting involved

3.1 Contributing

3.1.1 Reporting bugs

Perhaps the easiest way to contribute to Qtile is to report any bugs you run into on the github issue tracker.

Useful bug reports are ones that get bugs fixed. A useful bug report normally has two qualities:

1. Reproducible. If your bug is not reproducible it will never get fixed. You should clearly mention the steps to
reproduce the bug. Do not assume or skip any reproducing step. Described the issue, step-by-step, so that it is
easy to reproduce and fix.

2. Specific. Do not write a essay about the problem. Be Specific and to the point. Try to summarize the problem
in minimum words yet in effective way. Do not combine multiple problems even they seem to be similar. Write
different reports for each problem.

3.1.2 Writing code

To get started writing code for Qtile, check out our guide to Hacking on Qtile.

Git workflow

Our workflow is based on Vincent Driessen’s successful git branching model:

• The master branch is our current release

• The develop branch is what all pull requests should be based against

• Feature branches are where new features, both major and minor, should be developed.

21

https://github.com/qtile/qtile/issues
http://nvie.com/posts/a-successful-git-branching-model/


Qtile Documentation, Release 0.10.3

git-flow is a git plugin that helps facilitate this branching strategy. It’s not required, but can help make things a bit
easier to manage. There is also a good write up on using git-flow.

We also request that git commit messages follow the standard format.

Submit a pull request

You’ve done your hacking and are ready to submit your patch to Qtile. Great! Now it’s time to submit a pull request
to our issue tracker on Github.

Important: Pull requests are not considered complete until they include all of the following:

• Code that conforms to PEP8.

22 Chapter 3. Getting involved

https://github.com/nvie/gitflow
http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://help.github.com/articles/using-pull-requests
https://github.com/qtile/qtile/issues


Qtile Documentation, Release 0.10.3

• Unit tests that pass locally and in our CI environment.

• Documentation updates on an as needed basis.

Feel free to add your contribution (no matter how small) to the appropriate place in the CHANGELOG as well!

3.2 Hacking on Qtile

3.2.1 Requirements

Any reasonably recent version of these should work, so you can probably just install them from your package manager.

• Nose

• Xephyr

• xeyes and xclock

On ubuntu, this can be done with sudo apt-get install python-nose xserver-xephyr x11-apps.

3.2.2 Building cffi module

Qtile ships with a small in-tree pangocairo binding built using cffi, pangocffi.py, and also binds to xcursor with
cffi. The bindings are not built at run time and will have to be generated manually when the code is downloaded or
when any changes are made to the cffi library. This can be done by calling:

python libqtile/ffi_build.py

3.2.3 Using Xephyr and the test suite

Qtile has a very extensive test suite, using the Xephyr nested X server. When tests are run, a nested X server with a
nested instance of Qtile is fired up, and then tests interact with the Qtile instance through the client API. The fact that
we can do this is a great demonstration of just how completely scriptable Qtile is. In fact, Qtile is designed expressly
to be scriptable enough to allow unit testing in a nested environment.

The Qtile repo includes a tiny helper script to let you quickly pull up a nested instance of Qtile in Xephyr, using your
current configuration. Run it from the top-level of the repository, like this:

./scripts/xephyr

In practice, the development cycle looks something like this:

1. make minor code change

2. run appropriate test: nosetests --tests=test_module

3. GOTO 1, until hackage is complete

4. run entire test suite: nosetests

5. commit

3.2. Hacking on Qtile 23

http://nose.readthedocs.org/en/latest/
http://www.freedesktop.org/wiki/Software/Xephyr


Qtile Documentation, Release 0.10.3

3.2.4 Second X Session

Some users prefer to test Qtile in a second, completely separate X session: Just switch to a new tty and run startx
normally to use the ~/.xinitrc X startup script.

It’s likely though that you want to use a different, customized startup script for testing purposes, for example
~/.config/qtile/xinitrc. You can do so by launching X with:

startx ~/.config/qtile/xinitrc

startx deals with multiple X sessions automatically. If you want to use xinit instead, you need to first copy
/etc/X11/xinit/xserverrc to ~/.xserverrc; when launching it, you have to specify a new session num-
ber:

xinit ~/.config/qtile/xinitrc -- :1

Examples of custom X startup scripts are available in qtile-examples.

3.2.5 Capturing an xtrace

Occasionally, a bug will be low level enough to require an xtrace of Qtile’s conversations with the X server. To
capture one of these, create an xinitrc or similar file with:

exec xtrace qtile >> ~/.qtile.log

This will put the xtrace output in Qtile’s logfile as well. You can then demonstrate the bug, and paste the contents of
this file into the bug report.

3.2.6 Coding style

While not all of our code follows PEP8, we do try to adhere to it where possible. All new code should be PEP8
compliant.

The make lint command will run a linter with our configuration over libqtile to ensure your patch complies with
reasonable formatting constraints. We also request that git commit messages follow the standard format.

3.2.7 Deprecation policy

When a widget API is changed, you should deprecate the change using libqtile.widget.base.deprecated
to warn users, in additon to adding it to the appropriate place in the changelog. We will typically remove deprecated
APIs one tag after they are deprecated.

3.2.8 Testing

Of course, your patches should also pass the unit tests as well (i.e. make check). These will be run by travis-ci on
every pull request so you can see whether or not your contribution passes.

3.2.9 Resources

Here are a number of resources that may come in handy:

• Inter-Client Conventions Manual

24 Chapter 3. Getting involved

https://github.com/qtile/qtile-examples
http://www.python.org/dev/peps/pep-0008/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://tronche.com/gui/x/icccm/


Qtile Documentation, Release 0.10.3

• Extended Window Manager Hints

• A reasonable basic Xlib Manual

3.2. Hacking on Qtile 25

http://standards.freedesktop.org/wm-spec/wm-spec-latest.html
http://tronche.com/gui/x/xlib/


Qtile Documentation, Release 0.10.3

26 Chapter 3. Getting involved



CHAPTER 4

Miscellaneous

4.1 Reference

4.1.1 Built-in Hooks

subscribe.changegroup(func)
Called whenever a group change occurs.

subscribe.startup(func)
Called each time qtile is started (including the first time qtile starts)

subscribe.delgroup(func)
Called when group is deleted.

subscribe.focus_change(func)
Called when focus is changed.

subscribe.selection_change(func)
Called on selection chance.

subscribe.client_name_updated(func)
Called when the client name changes.

subscribe.screen_change(func)
Called when a screen is added or screen configuration is changed (via xrandr). The hook should take two
arguments: the root qtile object and the xproto.randr.ScreenChangeNotify event. Common usage is
simply to call qtile.cmd_restart() on each event (to restart qtile when there is a new monitor):

Example:

def restart_on_randr(qtile, ev):
qtile.cmd_restart()

subscribe.client_killed(func)
Called after a client has been unmanaged.

•arguments: window.Window object of the killed window.

subscribe.group_window_add(func)
Called when a new window is added to a group.

subscribe.net_wm_icon_change(func)
Called on _NET_WM_ICON chance.

27



Qtile Documentation, Release 0.10.3

subscribe.setgroup(func)
Called when group is changed.

subscribe.client_managed(func)
Called after Qtile starts managing a new client. That is, after a window is assigned to a group, or when a window
is made static. This hook is not called for internal windows.

•arguments: window.Window object

subscribe.client_state_changed(func)
Called whenever client state changes.

subscribe.layout_change(func)
Called on layout change.

subscribe.float_change(func)
Called when a change in float state is made

subscribe.window_name_change(func)
Called whenever a windows name changes.

subscribe.client_new(func)
Called before Qtile starts managing a new client. Use this hook to declare windows static, or add them to a
group on startup. This hook is not called for internal windows.

•arguments: window.Window object

Example:

def func(c):
if c.name == "xterm":

c.togroup("a")
elif c.name == "dzen":

c.static(0)

libqtile.hook.subscribe.client_new(func)

subscribe.addgroup(func)
Called when group is added.

subscribe.current_screen_change(func)
Called when the current screen (i.e. the screen with focus) changes; no arguments.

subscribe.selection_notify(func)
Called on selection notify.

subscribe.client_type_changed(func)
Called whenever window type changes.

subscribe.client_mouse_enter(func)
Called when the mouse enters a client.

subscribe.client_focus(func)
Called whenver focus changes.

•arguments: window.Window object of the new focus.

subscribe.client_urgent_hint_changed(func)
Called when the client urgent hint changes.

subscribe.startup_once(func)
Called when Qtile has initialized, exactly once (i.e. not on each lazy.restart()).

28 Chapter 4. Miscellaneous



Qtile Documentation, Release 0.10.3

4.1.2 Built-in Layouts

class libqtile.layout.floating.Floating(float_rules=None, **config)
Floating layout, which does nothing with windows but handles focus order

key default description
border_focus ’#0000ff’ Border colour for the

focused window.
border_normal ’#000000’ Border colour for

un-focused winows.
border_width 1 Border width.
max_border_width 0 Border width for

maximize.
fullscreen_border_width0 Border width for

fullscreen.
name ’floating’ Name of this layout.
auto_float_types {’notification’, ’splash’, ’dialog’,

’toolbar’, ’utility’}
default wm types to
automatically float

__init__(float_rules=None, **config)
If you have certain apps that you always want to float you can provide float_rules to do so.
float_rules is a list of dictionaries containing some or all of the keys:

{'wname': WM_NAME, 'wmclass': WM_CLASS, 'role': WM_WINDOW_ROLE}

The keys must be specified as above. You only need one, but you need to provide the value for it. When a
new window is opened it’s match method is called with each of these rules. If one matches, the window
will float. The following will float gimp and skype:

float_rules=[dict(wmclass="skype"), dict(wmclass="gimp")]

Specify these in the floating_layout in your config.

class libqtile.layout.matrix.Matrix(columns=2, **config)
This layout divides the screen into a matrix of equally sized cells and places one window in each cell. The
number of columns is configurable and can also be changed interactively.

key default description
border_focus ’#0000ff’ Border colour for the focused window.
border_normal ’#000000’ Border colour for un-focused winows.
border_width 1 Border width.
name ’matrix’ Name of this layout.
margin 0 Margin of the layout

class libqtile.layout.max.Max(**config)
A simple layout that only displays one window at a time, filling the screen. This is suitable for use on laptops
and other devices with small screens. Conceptually, the windows are managed as a stack, with commands to
switch to next and previous windows in the stack.

key default description
name ’max’ Name of this layout.

class libqtile.layout.xmonad.MonadTall(**config)
This layout attempts to emulate the behavior of XMonad’s default tiling scheme.

Main-Pane:

A main pane that contains a single window takes up a vertical portion of the screen based on the ratio setting.
This ratio can be adjusted with the cmd_grow and cmd_shrink methods while the main pane is in focus.

4.1. Reference 29



Qtile Documentation, Release 0.10.3

---------------------
| | |
| | |
| | |
| | |
| | |
| | |
---------------------

Using the cmd_flip method will switch which horizontal side the main pane will occupy. The main pane is
considered the “top” of the stack.
---------------------
| | |
| | |
| | |
| | |
| | |
| | |
---------------------

Secondary-panes:

Occupying the rest of the screen are one or more secondary panes. The secondary panes will share the vertical
space of the screen however they can be resized at will with the cmd_grow and cmd_shrink methods. The
other secondary panes will adjust their sizes to smoothly fill all of the space.
--------------------- ---------------------
| | | | |______|
| |______| | | |
| | | | | |
| |______| | | |
| | | | |______|
| | | | | |
--------------------- ---------------------

Panes can be moved with the cmd_shuffle_up and cmd_shuffle_down methods. As mentioned the
main pane is considered the top of the stack; moving up is counter-clockwise and moving down is clockwise.

The opposite is true if the layout is “flipped”.
--------------------- ---------------------
| | 2 | | 2 | |
| |______| |_______| |
| | 3 | | 3 | |
| 1 |______| |_______| 1 |
| | 4 | | 4 | |
| | | | | |
--------------------- ---------------------

Normalizing:

To restore all client windows to their default size ratios simply use the cmd_normalize method.

Maximizing:

To toggle a client window between its minimum and maximum sizes simply use the cmd_maximize on a
focused client.

Suggested Bindings:

Key([modkey], "h", lazy.layout.left()),
Key([modkey], "l", lazy.layout.right()),

30 Chapter 4. Miscellaneous



Qtile Documentation, Release 0.10.3

Key([modkey], "j", lazy.layout.down()),
Key([modkey], "k", lazy.layout.up()),
Key([modkey, "shift"], "h", lazy.layout.swap_left()),
Key([modkey, "shift"], "l", lazy.layout.swap_right()),
Key([modkey, "shift"], "j", lazy.layout.shuffle_down()),
Key([modkey, "shift"], "k", lazy.layout.shuffle_up()),
Key([modkey], "i", lazy.layout.grow()),
Key([modkey], "m", lazy.layout.shrink()),
Key([modkey], "n", lazy.layout.normalize()),
Key([modkey], "o", lazy.layout.maximize()),
Key([modkey, "shift"], "space", lazy.layout.flip()),

key default description
border_focus ’#ff0000’ Border colour for the focused window.
border_normal ’#000000’ Border colour for un-focused winows.
border_width 2 Border width.
single_border_widthNone Border width for single window
name ’xmonad-tall’Name of this layout.
margin 0 Margin of the layout
ratio 0.5 The percent of the screen-space the master pane should occupy by

default.
align 0 Which side master plane will be placed (one of

MonadTall._left or MonadTall._right)
change_ratio 0.05 Resize ratio
change_size 20 Resize change in pixels

class libqtile.layout.ratiotile.RatioTile(**config)
Tries to tile all windows in the width/height ratio passed in

key default description
border_focus ’#0000ff’ Border colour for the focused window.
border_normal ’#000000’ Border colour for un-focused winows.
border_width 1 Border width.
name ’ratiotile’ Name of this layout.
margin 0 Margin of the layout
ratio 1.618 Ratio of the tiles
ratio_increment 0.1 Amount to inrement per ratio increment
fancy False Use a different method to calculate window sizes.

class libqtile.layout.slice.Slice(side, width, **config)
Slice layout

This layout cuts piece of screen and places a single window on that piece, and delegates other window placement
to other layout

key default description
width 256 Slice width
side ’left’ Side of the slice (left, right, top,

bottom)
name ’max’ Name of this layout.
wname None WM_NAME to match
wmclass None WM_CLASS to match
role None WM_WINDOW_ROLE to

match
fallback <libqtile.layout.max.Max object at

0x7f6f960c8cc0>
Fallback layout

4.1. Reference 31



Qtile Documentation, Release 0.10.3

class libqtile.layout.stack.Stack(**config)
The stack layout divides the screen horizontally into a set of stacks. Commands allow you to switch between
stacks, to next and previous windows within a stack, and to split a stack to show all windows in the stack, or
unsplit it to show only the current window. At the moment, this is the most mature and flexible layout in Qtile.

key default description
border_focus ’#0000ff’ Border colour for the focused window.
border_normal ’#000000’ Border colour for un-focused winows.
border_width 1 Border width.
name ’stack’ Name of this layout.
autosplit False Auto split all new stacks.
num_stacks 2 Number of stacks.
fair False Add new windows to the stacks in a round robin way.
margin 0 Margin of the layout

class libqtile.layout.tile.Tile(ratio=0.618, masterWindows=1, expand=True, ra-
tio_increment=0.05, add_on_top=True, shift_windows=False,
master_match=None, **config)

key default description
border_focus ’#0000ff’ Border colour for the focused window.
border_normal ’#000000’ Border colour for un-focused winows.
border_width 1 Border width.
name ’tile’ Name of this layout.
margin 0 Margin of the layout

class libqtile.layout.tree.TreeTab(**config)
Tree Tab Layout

This layout works just like Max but displays tree of the windows at the left border of the screen, which allows you
to overview all opened windows. It’s designed to work with uzbl-browser but works with other windows
too.

32 Chapter 4. Miscellaneous



Qtile Documentation, Release 0.10.3

key default description
bg_color ’000000’ Background color of tabs
active_bg ’000080’ Background color of active tab
active_fg ’ffffff’ Foreground color of active tab
inactive_bg ’606060’ Background color of inactive tab
inactive_fg ’ffffff’ Foreground color of inactive tab
margin_left 6 Left margin of tab panel
margin_y 6 Vertical margin of tab panel
padding_left 6 Left padding for tabs
padding_x 6 Left padding for tab label
padding_y 2 Top padding for tab label
border_width 2 Width of the border
vspace 2 Space between tabs
level_shift 8 Shift for children tabs
font ’Arial’ Font
fontsize 14 Font pixel size.
fontshadow None font shadow color, default is None (no shadow)
section_fontsize 11 Font pixel size of section label
section_fg ’ffffff’ Color of section label
section_top 4 Top margin of section label
section_bottom 6 Bottom margin of section
section_padding 4 Bottom of magin section label
section_left 4 Left margin of section label
panel_width 150 Width of the left panel
sections [’Default’] Foreground color of inactive tab
name ’treetab’ Name of this layout.
previous_on_rm False Focus previous window on close instead of first.

class libqtile.layout.verticaltile.VerticalTile(**config)
VerticalTile implements a tiling layout that works nice on vertically mounted monitors. The available height
gets divided by the number of panes, if no pane is maximized. If one pane has been maximized, the available
height gets split in master- and secondary area. The maximized pane (master pane) gets the full height of the
master area and the other panes (secondary panes) share the remaining space. The master area (at default 75%)
can grow and shrink via keybindings.

----------------- ----------------- ---
| | | | |
| 1 | <-- Panes | | |
| | | | | |
|---------------| | | | |
| | | | | |
| 2 | <-----+ | 1 | | Master Area
| | | | | |
|---------------| | | | |
| | | | | |
| 3 | <-----+ | | |
| | | | | |
|---------------| | |---------------| ---
| | | | 2 | |
| 4 | <-----+ |---------------| | Secondary Area
| | | 3 | |
----------------- ----------------- ---

Normal behavior. No One maximized pane in the master area maximized pane. No and two secondary panes in
the specific areas. secondary area.

4.1. Reference 33



Qtile Documentation, Release 0.10.3

----------------------------------- In some cases VerticalTile can be
| | useful on horizontal mounted
| 1 | monitors two.
| | For example if you want to have a
|---------------------------------| webbrowser and a shell below it.
| |
| 2 |
| |
-----------------------------------

Suggested keybindings:

Key([modkey], 'j', lazy.layout.down()),
Key([modkey], 'k', lazy.layout.up()),
Key([modkey], 'Tab', lazy.layout.next()),
Key([modkey, 'shift'], 'Tab', lazy.layout.next()),
Key([modkey, 'shift'], 'j', lazy.layout.shuffle_down()),
Key([modkey, 'shift'], 'k', lazy.layout.shuffle_up()),
Key([modkey], 'm', lazy.layout.maximize()),
Key([modkey], 'n', lazy.layout.normalize()),

key default description
border_focus ’#FF0000’ Border color for the focused window.
border_normal ’#FFFFFF’ Border color for un-focused winows.
border_width 1 Border width.
margin 0 Border margin.
name ’VerticalTile’ Name of this layout.

class libqtile.layout.zoomy.Zoomy(**config)
A layout with single active windows, and few other previews at the right

key default description
columnwidth 150 Width of the right column
property_name ’ZOOM’ Property to set on zoomed window
property_small ’0.1’ Property value to set on zoomed window
property_big ’1.0’ Property value to set on normal window
margin 0 Margin of the layout

4.1.3 Built-in Widgets

class libqtile.widget.AGroupBox(**config)
A widget that graphically displays the current group.

Supported bar orientations: horizontal only

key default description
border ’000000’ group box border color

class libqtile.widget.Backlight(**config)
A simple widget to show the current brightness of a monitor.

Supported bar orientations: horizontal only

34 Chapter 4. Miscellaneous



Qtile Documentation, Release 0.10.3

key default description
backlight_name ’acpi_video0’ ACPI name of a backlight device
brightness_file ’brightness’ Name of file with the current brightness in

/sys/class/backlight/backlight_name
max_brightness_file’max_brightness’Name of file with the maximum brightness in

/sys/class/backlight/backlight_name
update_interval 0.2 The delay in seconds between updates

class libqtile.widget.Battery(**config)
A simple but flexible text-based battery widget.

Supported bar orientations: horizontal only

key default description
charge_char ’^’ Character to indicate the battery is

charging
discharge_char’V’ Character to indicate the battery is

discharging
error_message’Error’ Error message if something is wrong
format ’{char} {percent:2.0%}

{hour:d}:{min:02d}’
Display format

hide_thresholdNone Hide the text when there is enough
energy

low_percentage0.1 Indicates when to use the
low_foreground color 0 < x < 1

low_foreground’FF0000’ Font color on low battery

class libqtile.widget.BatteryIcon(**config)
Battery life indicator widget.

Supported bar orientations: horizontal only

key default description
theme_path’/home/docs/checkouts/readthedocs.org/user_builds/qtile/checkouts/v0.10.3/libqtile/resources/battery-icons’Path of the icons
custom_icons{} dict containing

key->filename
icon map

class libqtile.widget.BitcoinTicker(**config)
A bitcoin ticker widget, data provided by the btc-e.com API. Defaults to displaying currency in whatever the
current locale is.

Supported bar orientations: horizontal only

key default description
currency’’ The currency the value of bitcoin is displayed in
format ’BTC Buy: {buy}, Sell:

{sell}’
Display format, allows buy, sell, high, low, avg, vol,
vol_cur, last, variables.

class libqtile.widget.CPUGraph(**config)
Display CPU usage graph.

Supported bar orientations: horizontal only

key default description
core ’all’ Which core to show (all/0/1/2/...)

class libqtile.widget.Canto(**config)
Display RSS feeds updates using the canto console reader.

4.1. Reference 35



Qtile Documentation, Release 0.10.3

Supported bar orientations: horizontal only

key default description
fetch False Whether to fetch new items on update
feeds [] List of feeds to display, empty for all
one_format ’{name}: {number}’ One feed display format
all_format ’{number}’ All feeds display format

class libqtile.widget.CheckUpdates(**config)
Shows number of pending updates in different unix systems.

Supported bar orientations: horizontal only

key default description
distro ’Arch’ Name of your distribution
update_interval 60 Update interval in seconds.
execute None Command to execute on click
display_format ’Updates: {updates}’ Display format if updates available
colour_no_updates ’ffffff’ Colour when there’s no updates.
colour_have_updates ’ffffff’ Colour when there are updates.

class libqtile.widget.Clipboard(width=CALCULATED, **config)
Display current clipboard contents.

Supported bar orientations: horizontal only

key default description
selection’CLIPBOARD’the selection to display(CLIPBOARD or PRIMARY)
max_width10 maximum number of characters to display (None for all, useful when width is

bar.STRETCH)
timeout 10 Default timeout (seconds) for display text, None to keep forever
blacklist[’keepassx’]list with blacklisted wm_class, sadly not every clipboard window sets them,

keepassx does.Clipboard contents from blacklisted wm_classes will be replaced
by the value of blacklist_text.

blacklist_text’***********’text to display when the wm_class is blacklisted

class libqtile.widget.Clock(**config)
A simple but flexible text-based clock.

Supported bar orientations: horizontal only

key de-
fault

description

format ’%H:%M’A Python datetime format string
update_interval1.0 Update interval for the clock
timezone None The timezone to use for this clock, e.g. “US/Central” (or anything in

/usr/share/zoneinfo). None means the default timezone.

class libqtile.widget.Cmus(**config)
A simple Cmus widget.

Show the artist and album of now listening song and allow basic mouse control from the bar:

•toggle pause (or play if stopped) on left click;

•skip forward in playlist on scroll up;

•skip backward in playlist on scroll down.

Cmus (https://cmus.github.io) should be installed.

Supported bar orientations: horizontal only

36 Chapter 4. Miscellaneous

https://cmus.github.io


Qtile Documentation, Release 0.10.3

key default description
play_color ’00ff00’ Text colour when playing.
noplay_color ’cecece’ Text colour when not playing.
max_chars 0 Maximum number of characters to display in widget.
update_interval 0.5 Update Time in seconds.

class libqtile.widget.Countdown(**config)
A simple countdown timer text widget.

Supported bar orientations: horizontal only

key default description
format ’{D}d {H}h {M}m {S}s’ Format of the displayed text. Available variables:{D}

== days, {H} == hours, {M} == minutes, {S}
seconds.

update_interval1.0 Update interval in seconds for the clock
date datetime.datetime(2015,

12, 25, 19, 53, 25,
268114)

The datetime for the endo of the countdown

class libqtile.widget.CurrentLayout(width=CALCULATED, **config)
Display the name of the current layout of the current group of the screen, the bar containing the widget, is on.

Supported bar orientations: horizontal only

key default description
font ’Arial’ Default font
fontsize None Font size. Calculated if None.
padding None Padding. Calculated if None.
foreground ’ffffff’ Foreground colour
fontshadow None font shadow color, default is None(no shadow)
markup False Whether or not to use pango markup

class libqtile.widget.CurrentScreen(width=CALCULATED, **config)
Indicates whether the screen this widget is on is currently active or not.

Supported bar orientations: horizontal only

key default description
active_text ’A’ Text displayed when the screen is active
inactive_text ’I’ Text displayed when the screen is inactive
active_color ’00ff00’ Color when screen is active
inactive_color ’ff0000’ Color when screen is inactive

class libqtile.widget.DF(**config)
Disk Free Widget

By default the widget only displays if the space is less than warn_space.

Supported bar orientations: horizontal only

key default description
partition ’/’ the partition to check space
warn_color ’ff0000’ Warning color
warn_space 2 Warning space in scale defined by the measure option.
visible_on_warnTrue Only display if warning
measure ’G’ Measurement (G, M, B)
format ’{p}

({uf}{m})’
String format (p: partition, s: size, f: free space, uf: user free
space, m: measure)

update_interval60 The update inteval.

4.1. Reference 37



Qtile Documentation, Release 0.10.3

class libqtile.widget.DebugInfo(**config)
Displays debugging infos about selected window

Supported bar orientations: horizontal only

key default description
font ’Arial’ Default font
fontsize None Font size. Calculated if None.
padding None Padding. Calculated if None.
foreground ’ffffff’ Foreground colour
fontshadow None font shadow color, default is None(no shadow)
markup False Whether or not to use pango markup

class libqtile.widget.GenPollText(**config)
A generic text widget that polls using poll function to get the text.

Supported bar orientations: horizontal only

key default description
func None Poll Function

class libqtile.widget.GenPollUrl(**config)
A generic text widget that polls an url and parses it using parse function.

Supported bar orientations: horizontal only

key default description
url None Url
data None Post Data
parse None Parse Function
json True Is Json?
user_agent ’Qtile’ Set the user agent
headers {} Extra Headers

class libqtile.widget.GmailChecker(**config)
A simple gmail checker.

Supported bar orientations: horizontal only

key default description
update_interval 30 Update time in seconds.
username None username
password None password
email_path ’INBOX’ email_path
fmt ’inbox[%s],unseen[%s]’ fmt
status_only_unseen False Only show unseen messages

class libqtile.widget.GroupBox(**config)
A widget that graphically displays the current group.

Supported bar orientations: horizontal only

38 Chapter 4. Miscellaneous



Qtile Documentation, Release 0.10.3

key default description
active ’FFFFFF’ Active group font colour
inactive ’404040’ Inactive group font colour
highlight_method ’border’ Method of highlighting (‘border’, ‘block’, ‘text’, or

‘line’)Uses *_border color settings
rounded True To round or not to round box borders
this_current_screen_border’215578’ Border or line colour for group on this screen when

focused.
this_screen_border ’215578’ Border or line colour for group on this screen when

unfocused.
other_screen_border’404040’ Border or line colour for group on other screen.
highlight_color [’000000’,

’282828’]
Active group highlight color when using ‘line’ highlight
method.

urgent_alert_method’border’ Method for alerting you of WM urgent hints (one of
‘border’, ‘text’, ‘block’, or ‘line’)

urgent_text ’FF0000’ Urgent group font color
urgent_border ’FF0000’ Urgent border or line color
disable_drag False Disable dragging and dropping of group names on

widget
invert_mouse_wheel False Whether to invert mouse wheel group movement
visible_groups None Groups that will be visible (if set to None or [], all

groups will be visible)

class libqtile.widget.HDDBusyGraph(**config)
Parses /sys/block/<dev>/stat file and extracts overall device IO usage, based on io_ticks‘s value. See
https://www.kernel.org/doc/Documentation/block/stat.txt

Supported bar orientations: horizontal only

key default description
device ’sda’ Block device to display info for

class libqtile.widget.HDDGraph(**config)
Display HDD free or used space graph.

Supported bar orientations: horizontal only

key default description
path ’/’ Partition mount point.
space_type ’used’ free/used

class libqtile.widget.Image(length=CALCULATED, width=None, **config)
Display a PNG image on the bar.

Supported bar orientations: horizontal and vertical

key default description
scale True Enable/Disable image scaling
filename None PNG Image filename. Can contain ‘~’

class libqtile.widget.KeyboardLayout(**config)
Widget for changing and displaying the current keyboard layout. It requires setxkbmap to be available in the
system.

Supported bar orientations: horizontal only

4.1. Reference 39

https://www.kernel.org/doc/Documentation/block/stat.txt


Qtile Documentation, Release 0.10.3

key de-
fault

description

update_interval 1 Update time in seconds.
configured_keyboards[’us’]A list of predefined keyboard layouts represented as strings. For example:

[’us’, ‘us colemak’, ‘es’, ‘fr’].

class libqtile.widget.Maildir(**config)
A simple widget showing the number of new mails in maildir mailboxes.

Supported bar orientations: horizontal only

key default description
maildirPath’~/Mail’path to the Maildir folder
subFolders[] The subfolders to scan (e.g. [{“path”: “INBOX”, “label”: “Home mail”},

{“path”: “spam”, “label”: “Home junk”}]
separator ’ ’ the string to put between the subfolder strings.

class libqtile.widget.Memory(**config)
Displays memory usage.

Supported bar orientations: horizontal only

key default description
fmt ’{MemUsed}M/{MemTotal}M’ see /proc/meminfo for field names

class libqtile.widget.MemoryGraph(**config)
Displays a memory usage graph.

Supported bar orientations: horizontal only

key default description
graph_color ’18BAEB’ Graph color
fill_color ’1667EB.3’ Fill color for linefill graph
border_color ’215578’ Widget border color
border_width 2 Widget border width
margin_x 3 Margin X
margin_y 3 Margin Y
samples 100 Count of graph samples.
frequency 1 Update frequency in seconds
type ’linefill’ ‘box’, ‘line’, ‘linefill’
line_width 3 Line width
start_pos ’bottom’ Drawer starting position (‘bottom’/’top’)

class libqtile.widget.Moc(**config)
A simple MOC widget.

Show the artist and album of now listening song and allow basic mouse control from the bar:

•toggle pause (or play if stopped) on left click;

•skip forward in playlist on scroll up;

•skip backward in playlist on scroll down.

MOC (http://moc.daper.net) should be installed.

Supported bar orientations: horizontal only

40 Chapter 4. Miscellaneous

http://moc.daper.net


Qtile Documentation, Release 0.10.3

key default description
play_color ’00ff00’ Text colour when playing.
noplay_color ’cecece’ Text colour when not playing.
max_chars 0 Maximum number of characters to display in widget.
update_interval 0.5 Update Time in seconds.

class libqtile.widget.Net(**config)
Displays interface down and up speed.

Supported bar orientations: horizontal only

key default description
interface ’wlan0’ The interface to monitor
update_interval 1 The update interval.

class libqtile.widget.NetGraph(**config)
Display a network usage graph.

Supported bar orientations: horizontal only

key default description
interface ’auto’ Interface to display info for (‘auto’ for detection)
bandwidth_type ’down’ down(load)/up(load)

class libqtile.widget.Notify(width=CALCULATED, **config)
A notify widget.

Supported bar orientations: horizontal only

key default description
foreground_urgent ’ff0000’ Foreground urgent priority colour
foreground_low ’dddddd’ Foreground low priority colour
default_timeout None Default timeout (seconds) for notifications
audiofile None Audiofile played during notifications

class libqtile.widget.Pacman(**config)
Shows number of available updates. Needs the pacman package manager installed. So will only work in Arch
Linux installation.

Supported bar orientations: horizontal only

key default description
unavailable ’ffffff’ Unavailable Color - no updates.
execute None Command to execute on click
update_interval 60 The update interval.

class libqtile.widget.Prompt(name=’prompt’, **config)
A widget that prompts for user input. Input should be started using the .startInput method on this class.

Supported bar orientations: horizontal only

4.1. Reference 41



Qtile Documentation, Release 0.10.3

key default description
cursor True Show a cursor
cursorblink 0.5 Cursor blink rate. 0 to disable.
cursor_color ’bef098’ Color for the cursor and text over it.
prompt ’{prompt}:

’
Text displayed at the prompt

record_history True Keep a record of executed commands
max_history 100 Commands to keep in history. 0 for no limit.
bell_style ’audible’ Alert at the begin/end of the command history. Posible values:

‘audible’, ‘visual’ and None.
visual_bell_color’ff0000’ Color for the visual bell (changes prompt background).
visual_bell_time0.2 Visual bell duration (in seconds).

class libqtile.widget.Sep(height_percent=None, **config)
A visible widget separator.

Supported bar orientations: horizontal and vertical

key default description
padding 2 Padding on either side of separator.
linewidth 1 Width of separator line.
foreground ’888888’ Separator line colour.
size_percent 80 Size as a percentage of bar size (0-100).

class libqtile.widget.She(**config)
Widget to display the Super Hybrid Engine status. Can display either the mode or CPU speed on eeepc comput-
ers.

Supported bar orientations: horizontal only

key default description
device ’/sys/devices/platform/eeepc/cpufv’sys path to cpufv
format ’speed’ Type of info to display “speed” or

“name”
update_interval0.5 Update Time in seconds.

class libqtile.widget.Spacer(length=STRETCH, width=None)
Just an empty space on the bar. Often used with length equal to bar.STRETCH to push bar widgets to the right
or bottom edge of the screen.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color

__init__(length=STRETCH, width=None)

•length: Length of the widget. Can be either bar.STRETCH or a length in pixels.

•width: DEPRECATED, same as length.

class libqtile.widget.SwapGraph(**config)
Display a swap info graph.

Supported bar orientations: horizontal only

42 Chapter 4. Miscellaneous



Qtile Documentation, Release 0.10.3

key default description
graph_color ’18BAEB’ Graph color
fill_color ’1667EB.3’ Fill color for linefill graph
border_color ’215578’ Widget border color
border_width 2 Widget border width
margin_x 3 Margin X
margin_y 3 Margin Y
samples 100 Count of graph samples.
frequency 1 Update frequency in seconds
type ’linefill’ ‘box’, ‘line’, ‘linefill’
line_width 3 Line width
start_pos ’bottom’ Drawer starting position (‘bottom’/’top’)

class libqtile.widget.Systray(**config)
A widget that manages system tray.

Supported bar orientations: horizontal only

key default description
icon_size 20 Icon width
padding 5 Padding between icons

class libqtile.widget.TaskList(**config)
Displays the icon and name of each window in the current group. Contrary to WindowTabs this is an interactive
widget. The window that currently has focus is highlighted.

Supported bar orientations: horizontal only

key default description
font ’Arial’ Default font
fontsize None Font size. Calculated if None.
foreground ’ffffff’ Foreground colour
fontshadow None font shadow color, default is None(no shadow)
borderwidth 2 Current group border width
border ’215578’ Border colour
rounded True To round or not to round borders
highlight_method ’border’ Method of highlighting (one of ‘border’ or ‘block’) Uses *_border

color settings
urgent_border ’FF0000’ Urgent border color
urgent_alert_method’border’ Method for alerting you of WM urgent hints (one of ‘border’ or

‘text’)
max_title_width 200 size in pixels of task title

class libqtile.widget.TextBox(text=’ ‘, width=CALCULATED, **config)
A flexible textbox that can be updated from bound keys, scripts and qsh.

Supported bar orientations: horizontal only

key default description
font ’Arial’ Text font
fontsize None Font pixel size. Calculated if None.
fontshadow None font shadow color, default is None(no shadow)
padding None Padding left and right. Calculated if None.
foreground ’#ffffff’ Foreground colour.

class libqtile.widget.ThermalSensor(**config)
For using the thermal sensor widget you need to have lm-sensors installed. You can get a list of the tag_sensors

4.1. Reference 43



Qtile Documentation, Release 0.10.3

executing “sensors” in your terminal. Then you can choose which you want, otherwise it will display the first
available.

Supported bar orientations: horizontal only

key default description
metric True True to use metric/C, False to use imperial/F
show_tag False Show tag sensor
update_interval 2 Update interval in seconds
tag_sensor None Tag of the temperature sensor. For example: “temp1” or “Core 0”
threshold 70 If the current temperature value is above, then change to

foreground_alert colour
foreground_alert’ff0000’ Foreground colour alert

class libqtile.widget.Volume(**config)
Widget that display and change volume if theme_path is set it draw widget as icons.

Supported bar orientations: horizontal only

key default description
cardid None Card Id
device ’default’Device Name
channel ’Master’Channel
padding 3 Padding left and right. Calculated if None.
theme_path None Path of the icons
update_interval0.2 Update time in seconds.
emoji False Use emoji to display volume states, only if theme_path is not set.The

specified font needs to contain the correct unicode characters.
mute_command None Mute command
volume_up_commandNone Volume up command
volume_down_commandNone Volume down command
get_volume_commandNone Command to get the current volume

class libqtile.widget.Wallpaper(**config)
Supported bar orientations: horizontal only

key default description
directory ’/home/docs/Pictures/wallpapers/’ Wallpaper Directory
wallpaper None Wallpaper
wallpaper_command None Wallpaper command

class libqtile.widget.WindowName(width=STRETCH, **config)
Displays the name of the window that currently has focus.

Supported bar orientations: horizontal only

key default description
show_state True show window status before window name

class libqtile.widget.WindowTabs(**config)
Displays the name of each window in the current group. Contrary to TaskList this is not an interactive widget.
The window that currently has focus is highlighted.

Supported bar orientations: horizontal only

key default description
separator ’ | ’ Task separator text.
selected (’<’, ’>’) Selected task indicator

44 Chapter 4. Miscellaneous



Qtile Documentation, Release 0.10.3

class libqtile.widget.YahooWeather(**config)
A weather widget, data provided by the Yahoo! Weather API.

Format options:

•astronomy_sunrise

•astronomy_sunset

•atmosphere_humidity

•atmosphere_visibility

•atmosphere_pressure

•atmosphere_rising

•condition_text

•condition_code

•condition_temp

•condition_date

•location_city

•location_region

•location_country

•units_temperature

•units_distance

•units_pressure

•units_speed

•wind_chill

Supported bar orientations: horizontal only

key default description
locationNone Location to fetch weather for.

Ignored if woeid is set.
woeid None Where On Earth ID.

Auto-calculated if location is set.
format ’{location_city}: {condition_temp}

°{units_temperature}’
Display format

metric True True to use metric/C, False to use
imperial/F

up ’^’ symbol for rising atmospheric
pressure

down ’v’ symbol for falling atmospheric
pressure

steady ’s’ symbol for steady atmospheric
pressure

4.1. Reference 45



Qtile Documentation, Release 0.10.3

4.2 Frequently Asked Questions

4.2.1 When I first start xterm/urxvt/rxvt containing an instance of Vim, I see text
and layout corruption. What gives?

Vim is not handling terminal resizes correctly. You can fix the problem by starting your xterm with the “-wf” option,
like so:

xterm -wf -e vim

Alternatively, you can just cycle through your layouts a few times, which usually seems to fix it.

4.2.2 How do I know which modifier specification maps to which key?

To see a list of modifier names and their matching keys, use the xmodmap command. On my system, the output looks
like this:

$ xmodmap
xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x32), Shift_R (0x3e)
lock Caps_Lock (0x9)
control Control_L (0x25), Control_R (0x69)
mod1 Alt_L (0x40), Alt_R (0x6c), Meta_L (0xcd)
mod2 Num_Lock (0x4d)
mod3
mod4 Super_L (0xce), Hyper_L (0xcf)
mod5 ISO_Level3_Shift (0x5c), Mode_switch (0xcb)

4.2.3 My “pointer mouse cursor” isn’t the one I expect it to be!

Qtile should set the default cursor to left_ptr, you must install xcb-util-cursor if you want support for themed cursors.

4.3 License

This project is distributed under the MIT license.

Copyright (c) 2008, Aldo Cortesi All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

46 Chapter 4. Miscellaneous



Qtile Documentation, Release 0.10.3

• genindex

4.3. License 47



Qtile Documentation, Release 0.10.3

48 Chapter 4. Miscellaneous



Index

Symbols
__init__() (libqtile.config.Group method), 6
__init__() (libqtile.config.Match method), 6
__init__() (libqtile.layout.floating.Floating method), 29
__init__() (libqtile.widget.Spacer method), 42

A
addgroup() (libqtile.hook.subscribe method), 28
AGroupBox (class in libqtile.widget), 34

B
Backlight (class in libqtile.widget), 34
Battery (class in libqtile.widget), 35
BatteryIcon (class in libqtile.widget), 35
BitcoinTicker (class in libqtile.widget), 35

C
Canto (class in libqtile.widget), 35
changegroup() (libqtile.hook.subscribe method), 27
CheckUpdates (class in libqtile.widget), 36
client_focus() (libqtile.hook.subscribe method), 28
client_killed() (libqtile.hook.subscribe method), 27
client_managed() (libqtile.hook.subscribe method), 28
client_mouse_enter() (libqtile.hook.subscribe method),

28
client_name_updated() (libqtile.hook.subscribe method),

27
client_new() (libqtile.hook.subscribe method), 28
client_state_changed() (libqtile.hook.subscribe method),

28
client_type_changed() (libqtile.hook.subscribe method),

28
client_urgent_hint_changed() (libqtile.hook.subscribe

method), 28
Clipboard (class in libqtile.widget), 36
Clock (class in libqtile.widget), 36
Cmus (class in libqtile.widget), 36
Countdown (class in libqtile.widget), 37
CPUGraph (class in libqtile.widget), 35

current_screen_change() (libqtile.hook.subscribe
method), 28

CurrentLayout (class in libqtile.widget), 37
CurrentScreen (class in libqtile.widget), 37

D
DebugInfo (class in libqtile.widget), 38
delgroup() (libqtile.hook.subscribe method), 27
DF (class in libqtile.widget), 37

F
float_change() (libqtile.hook.subscribe method), 28
Floating (class in libqtile.layout.floating), 29
focus_change() (libqtile.hook.subscribe method), 27

G
GenPollText (class in libqtile.widget), 38
GenPollUrl (class in libqtile.widget), 38
GmailChecker (class in libqtile.widget), 38
Group (class in libqtile.config), 6
group_window_add() (libqtile.hook.subscribe method),

27
GroupBox (class in libqtile.widget), 38

H
HDDBusyGraph (class in libqtile.widget), 39
HDDGraph (class in libqtile.widget), 39

I
Image (class in libqtile.widget), 39

K
KeyboardLayout (class in libqtile.widget), 39

L
layout_change() (libqtile.hook.subscribe method), 28

M
Maildir (class in libqtile.widget), 40

49



Qtile Documentation, Release 0.10.3

Match (class in libqtile.config), 6
Matrix (class in libqtile.layout.matrix), 29
Max (class in libqtile.layout.max), 29
Memory (class in libqtile.widget), 40
MemoryGraph (class in libqtile.widget), 40
Moc (class in libqtile.widget), 40
MonadTall (class in libqtile.layout.xmonad), 29

N
Net (class in libqtile.widget), 41
net_wm_icon_change() (libqtile.hook.subscribe method),

27
NetGraph (class in libqtile.widget), 41
Notify (class in libqtile.widget), 41

P
Pacman (class in libqtile.widget), 41
Prompt (class in libqtile.widget), 41

R
RatioTile (class in libqtile.layout.ratiotile), 31

S
screen_change() (libqtile.hook.subscribe method), 27
selection_change() (libqtile.hook.subscribe method), 27
selection_notify() (libqtile.hook.subscribe method), 28
Sep (class in libqtile.widget), 42
setgroup() (libqtile.hook.subscribe method), 27
She (class in libqtile.widget), 42
simple_key_binder() (in module libqtile.dgroups), 6
Slice (class in libqtile.layout.slice), 31
Spacer (class in libqtile.widget), 42
Stack (class in libqtile.layout.stack), 31
startup() (libqtile.hook.subscribe method), 27
startup_once() (libqtile.hook.subscribe method), 28
SwapGraph (class in libqtile.widget), 42
Systray (class in libqtile.widget), 43

T
TaskList (class in libqtile.widget), 43
TextBox (class in libqtile.widget), 43
ThermalSensor (class in libqtile.widget), 43
Tile (class in libqtile.layout.tile), 32
TreeTab (class in libqtile.layout.tree), 32

V
VerticalTile (class in libqtile.layout.verticaltile), 33
Volume (class in libqtile.widget), 44

W
Wallpaper (class in libqtile.widget), 44
window_name_change() (libqtile.hook.subscribe

method), 28

WindowName (class in libqtile.widget), 44
WindowTabs (class in libqtile.widget), 44

Y
YahooWeather (class in libqtile.widget), 44

Z
Zoomy (class in libqtile.layout.zoomy), 34

50 Index


	Getting started
	Installing Qtile
	Configuration

	Commands and scripting
	Commands API
	Scripting
	qsh

	Getting involved
	Contributing
	Hacking on Qtile

	Miscellaneous
	Reference
	Frequently Asked Questions
	License


