
Qtile Documentation
Release 0.21.1.dev0+gb4577ac.d20220323

Aldo Cortesi

Mar 23, 2022

CONTENTS

1 Getting started 1

2 Reference 43

3 Advanced scripting 123

4 Getting involved 141

5 Miscellaneous 149

6 Tips & Tricks 153

Index 167

i

ii

CHAPTER

ONE

GETTING STARTED

1.1 Installing Qtile

1.1.1 Distro Guides

Below are the preferred installation methods for specific distros. If you are running something else, please see Installing
From Source.

Installing on Arch Linux

Stable versions of Qtile are currently packaged for Arch Linux. To install this package, run:

pacman -S qtile

Please see the ArchWiki for more information on Qtile.

Installing on Fedora

Stable versions of Qtile are not currently packaged for the current version of Fedora. Users are advised to follow the
instructions of Installing From Source.

Installing on Funtoo

Latest versions of Qtile are available on Funtoo. To install it, run:

emerge -av x11-wm/qtile

You can also install the development version from GitHub:

echo "x11-wm/qtile-9999 **" >> /etc/portage/package.accept_keywords
emerge -av qtile

1

https://wiki.archlinux.org/index.php/Qtile

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Customize

You can customize your installation with the following useflags:

• dbus

• widget-khal-calendar

• widget-imap

• widget-keyboardkbdd

• widget-launchbar

• widget-mpd

• widget-mpris

• widget-wlan

The dbus useflag is enabled by default. Disable it only if you know what it is and know you don't use/need it.

All widget-* useflags are disabled by default because these widgets require additional dependencies while not everyone
will use them. Enable only widgets you need to avoid extra dependencies thanks to these useflags.

Visit Funtoo Qtile documentation for more details on Qtile installation on Funtoo.

Installing on Debian or Ubuntu

Note: As of Ubuntu 20.04 (Focal Fossa), the package has been outdated and removed from the Ubuntu's official package
list. Users are advised to follow the instructions of Installing From Source.

On other recent Ubuntu (17.04 or greater) and Debian unstable versions, there are Qtile packages available via:

sudo apt-get install qtile

On older versions of Ubuntu (15.10 to 16.10) and Debian 9, the dependencies are available via:

sudo apt-get install python3-xcffib python3-cairocffi

Debian 11 (bullseye)

Debian 11 comes with the necessary packages for installing Qtile. Starting from a minimal Debian installation, the
following packages are required:

sudo apt install xserver-xorg xinit
sudo apt install libpangocairo-1.0-0
sudo apt install python3-pip python3-xcffib python3-cairocffi

Either Qtile can then be downloaded from the package index or the Github repository can be used, see Installing From
Source:

pip install qtile

2 Chapter 1. Getting started

https://www.funtoo.org/Package:Qtile

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Installing on Slackware

Qtile is available on the SlackBuilds.org as:

Package Name Description
qtile stable branch (release)

Using slpkg (third party package manager)

The easy way to install Qtile is with slpkg. For example:

slpkg -s sbo qtile

Manual installation

Download dependencies first and install them. The order in which you need to install is:

• pycparser

• cffi

• futures

• python-xcffib

• trollius

• cairocffi

• qtile

Please see the HOWTO for more information on SlackBuild Usage HOWTO.

Installing on FreeBSD

Qtile is available via FreeBSD Ports. It can be installed with

pkg install qtile

1.1.2 Installing From Source

Python interpreters

We aim to always support the last three versions of CPython, the reference Python interpreter. We usually support the
latest stable version of PyPy as well. You can check the versions and interpreters we currently run our test suite against
in our tox configuration file.

There are not many differences between versions aside from Python features you may or may not be able to use in your
config. PyPy should be faster at runtime than any corresponding CPython version under most circumstances, especially
for bits of Python code that are run many times. CPython should start up faster than PyPy and has better compatibility
for external libraries.

1.1. Installing Qtile 3

https://slackbuilds.org/repository/14.2/desktop/qtile/
https://github.com/dslackw/slpkg
https://slackbuilds.org/howto/
https://www.freshports.org/x11-wm/qtile/
https://www.pypy.org/
https://github.com/qtile/qtile/blob/master/tox.ini

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Core Dependencies

Here are Qtile's core runtime dependencies and where available the package name that provides them in Ubuntu. Note
that Qtile can run with one of two backends -- X11 and Wayland -- so only the dependencies of one of these is required.

Dependency Ubuntu Package Needed for
CFFI python3-cffi Both backends, bars and popups
X server xserver-xorg X11 backend
xcffib python3-xcffib X11 backend
wlroots libwlroots-dev Wayland backend (see below)
pywlroots -- Wayland backend
pywayland -- Wayland backend
python-xkbcommon -- Wayland backend
cairocffi python3-cairocffi Drawing on bars and popups (see below)
libpangocairo libpangocairo-1.0-0 Writing on bars and popups
dbus-next -- Sending notifications with dbus (optional)

cairocffi

Qtile uses cairocffi for drawing on status bars and popup windows. Under X11, cairocffi requires XCB support via
xcffib, which you should be sure to have installed before installing cairocffi, otherwise the needed cairo-xcb bindings
will not be built. Once you've got the dependencies installed, you can use the latest version on PyPI:

pip install --no-cache-dir cairocffi

Qtile

With the dependencies in place, you can now install qtile:

git clone https://github.com/qtile/qtile.git
cd qtile
pip install .

Stable versions of Qtile can be installed from PyPI:

pip install qtile

As long as the necessary libraries are in place, this can be done at any point, however, it is recommended that you first
install xcffib to ensure the cairo-xcb bindings are built (X11 only) (see above).

1.1.3 Wayland

Qtile can be run as a Wayland compositor rather than an X11 window manager. For this, Qtile uses wlroots, a compositor
library which is undergoing fast development. This means we can only support the latest release. Be aware that some
distributions package outdated versions of wlroots. More up-to-date distributions such as Arch Linux may also package
pywayland, pywlroots and python-xkbcommon.

With the Wayland dependencies in place, Qtile can be run either from a TTY, or within an existing X11 or Wayland
session where it will run inside a nested window:

4 Chapter 1. Getting started

https://cffi.readthedocs.io/en/latest/installation.html
https://github.com/tych0/xcffib#installation
https://gitlab.freedesktop.org/wlroots/wlroots
https://github.com/flacjacket/pywlroots
https://pywayland.readthedocs.io/en/latest/install.html
https://github.com/sde1000/python-xkbcommon
https://cairocffi.readthedocs.io/en/stable/overview.html
https://python-dbus-next.readthedocs.io/en/latest/index.html
https://cairocffi.readthedocs.io/en/stable/overview.html
https://gitlab.freedesktop.org/wlroots/wlroots

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

qtile start -b wayland

See the Wayland page for more information on running Qtile as a Wayland compositor.

1.2 Configuration

Qtile is configured in Python. A script (~/.config/qtile/config.py by default) is evaluated, and a small set of
configuration variables are pulled from its global namespace.

1.2.1 Configuration lookup order

Qtile looks in the following places for a configuration file, in order:

• The location specified by the -c argument.

• $XDG_CONFIG_HOME/qtile/config.py, if it is set

• ~/.config/qtile/config.py

• It reads the module libqtile.resources.default_config, included by default with every Qtile installation.

Qtile will try to create the configuration file as a copy of the default config, if it doesn't exist yet.

1.2.2 Default Configuration

The default configuration is invoked when qtile cannot find a configuration file. In addition, if qtile is restarted or the
config is reloaded, qtile will load the default configuration if the config file it finds has some kind of error in it. The
documentation below describes the configuration lookup process, as well as what the key bindings are in the default
config.

The default config is not intended to be suitable for all users; it's mostly just there so qtile does /something/ when fired
up, and so that it doesn't crash and cause you to lose all your work if you reload a bad config.

Key Bindings

The mod key for the default config is mod4, which is typically bound to the "Super" keys, which are things like the
windows key and the mac command key. The basic operation is:

• mod + k or mod + j: switch windows on the current stack

• mod + <space>: put focus on the other pane of the stack (when in stack layout)

• mod + <tab>: switch layouts

• mod + w: close window

• mod + <ctrl> + r: reload the config

• mod + <group name>: switch to that group

• mod + <shift> + <group name>: send a window to that group

• mod + <enter>: start terminal guessed by libqtile.utils.guess_terminal

• mod + r: start a little prompt in the bar so users can run arbitrary commands

1.2. Configuration 5

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

The default config defines one screen and 8 groups, one for each letter in asdfuiop. It has a basic bottom bar that
includes a group box, the current window name, a little text reminder that you're using the default config, a system tray,
and a clock.

The default configuration has several more advanced key combinations, but the above should be enough for basic usage
of qtile.

See Keybindings in images for visual keybindings in keyboard layout.

Mouse Bindings

By default, holding your mod key and clicking (and holding) a window will allow you to drag it around as a floating
window.

1.2.3 Configuration variables

A Qtile configuration consists of a file with a bunch of variables in it, which qtile imports and then runs as a Python
file to derive its final configuration. The documentation below describes the most common configuration variables;
more advanced configuration can be found in the qtile-examples repository, which includes a number of real-world
configurations that demonstrate how you can tune Qtile to your liking. (Feel free to issue a pull request to add your
own configuration to the mix!)

Lazy objects

The lazy.lazy object is a special helper object to specify a command for later execution. This object acts like the
root of the object graph, which means that we can specify a key binding command with the same syntax used to call
the command through a script or through qtile shell.

Example

from libqtile.config import Key
from libqtile.command import lazy

keys = [
Key(

["mod1"], "k",
lazy.layout.down()

),
Key(

["mod1"], "j",
lazy.layout.up()

)
]

6 Chapter 1. Getting started

https://github.com/qtile/qtile-examples

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Lazy functions

This is overview of the commonly used functions for the key bindings. These functions can be called from commands
on the Qtile object or on another object in the command tree.

Some examples are given below.

General functions

function description
lazy.
spawn("application")

Run the application

lazy.spawncmd() Open command prompt on the bar. See prompt widget.
lazy.
reload_config()

Reload the config.

lazy.restart() Restart Qtile. In X11, it won't close your windows.
lazy.shutdown() Close the whole Qtile

Group functions

function description
lazy.
next_layout()

Use next layout on the actual group

lazy.
prev_layout()

Use previous layout on the actual group

lazy.screen.
next_group()

Move to the group on the right

lazy.screen.
prev_group()

Move to the group on the left

lazy.screen.
toggle_group()

Move to the last visited group

lazy.group.
next_window()

Switch window focus to next window in group

lazy.group.
prev_window()

Switch window focus to previous window in group

lazy.
group["group_name"].
toscreen()

Move to the group called group_name. Takes an optional toggle parameter (defaults to
False). If this group is already on the screen, it does nothing by default; to toggle with the
last used group instead, use toggle=True.

lazy.layout.
increase_ratio()

Increase the space for master window at the expense of slave windows

lazy.layout.
decrease_ratio()

Decrease the space for master window in the advantage of slave windows

1.2. Configuration 7

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Window functions

function description
lazy.window.
kill()

Close the focused window

lazy.layout.
next()

Switch window focus to other pane(s) of stack

lazy.window.
togroup("group_name")

Move focused window to the group called group_name

lazy.window.
toggle_floating()

Put the focused window to/from floating mode

lazy.window.
toggle_fullscreen()

Put the focused window to/from fullscreen mode

Screen functions

function description
lazy.screen.
set_wallpaper(path,
mode=None)

Set the wallpaper to the specificied image. Possible modes: None no resizing, 'fill' centre
and resize to fill screen, 'stretch' stretch to fill screen.

ScratchPad DropDown functions

function description
lazy.
group["group_name"].
dropdown_toggle("name")

Toggles the visibility of the specified DropDown window. On first use, the configured pro-
cess is spawned.

lazy.
group["group_name"].
hide_all()

Hides all DropDown windows.

lazy.
group["group_name"].
dropdown_reconfigure("name",

**configuration)

Update the configuration of the named DropDown.

User-defined functions

function description
lazy.
function(func,
*args,
**kwargs)

Calls func(qtile, *args, **kwargs). NB. the qtile object is automatically passed
as the first argument.

8 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Examples

lazy.function can also be used as a decorator for functions.

from libqtile.config import Key
from libqtile.command import lazy

@lazy.function
def my_function(qtile):

...

keys = [
Key(

["mod1"], "k",
my_function

)
]

Additionally, you can pass arguments to user-defined function in one of two ways:

1) In-line definition

Arguments can be added to the lazy.function call.

from libqtile.config import Key
from libqtile.command import lazy
from libqtile.log_utils import logger

def multiply(qtile, value, multiplier=10):
logger.warning(f"Multiplication results: {value * multiplier}")

keys = [
Key(

["mod1"], "k",
lazy.function(multiply, 10, multiplier=2)

)
]

2) Decorator

Arguments can also be passed to the decorated function.

from libqtile.config import Key
from libqtile.command import lazy
from libqtile.log_utils import logger

@lazy.function
def multiply(qtile, value, multiplier=10):

logger.warning(f"Multiplication results: {value * multiplier}")

keys = [
Key(

["mod1"], "k",
multiply(10, multiplier=2)

(continues on next page)

1.2. Configuration 9

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

)
]

Groups

A group is a container for a bunch of windows, analogous to workspaces in other window managers. Each client
window managed by the window manager belongs to exactly one group. The groups config file variable should be
initialized to a list of DGroup objects.

DGroup objects provide several options for group configuration. Groups can be configured to show and hide themselves
when they're not empty, spawn applications for them when they start, automatically acquire certain groups, and various
other options.

Example

from libqtile.config import Group, Match
groups = [

Group("a"),
Group("b"),
Group("c", matches=[Match(wm_class=["Firefox"])]),

]

allow mod3+1 through mod3+0 to bind to groups; if you bind your groups
by hand in your config, you don't need to do this.
from libqtile.dgroups import simple_key_binder
dgroups_key_binder = simple_key_binder("mod3")

Reference

Group

class libqtile.config.Group(name: str, matches: Optional[list[libqtile.config.Match]] = None,
exclusive=False, spawn: Optional[Union[str, list[str]]] = None, layout:
Optional[str] = None, layouts: Optional[list] = None, persist=True, init=True,
layout_opts=None, screen_affinity=None, position=9223372036854775807,
label: Optional[str] = None)

Represents a "dynamic" group

These groups can spawn apps, only allow certain Matched windows to be on them, hide when they're not in use,
etc. Groups are identified by their name.

Parameters
name: string the name of this group

matches: default ``None`` list of Match objects whose windows will be assigned to this group

exclusive: boolean when other apps are started in this group, should we allow them here or not?

spawn: string or list of strings this will be exec() d when the group is created, you can pass
either a program name or a list of programs to exec()

10 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

layout: string the name of default layout for this group (e.g. 'max' or 'stack'). This is the name
specified for a particular layout in config.py or if not defined it defaults in general the class
name in all lower case.

layouts: list the group layouts list overriding global layouts. Use this to define a separate list of
layouts for this particular group.

persist: boolean should this group stay alive with no member windows?

init: boolean is this group alive when qtile starts?

position int group position

label: string the display name of the group. Use this to define a display name other than name
of the group. If set to None, the display name is set to the name.

libqtile.dgroups.simple_key_binder(mod, keynames=None)
Bind keys to mod+group position or to the keys specified as second argument

Group Matching

Match

class libqtile.config.Match(title=None, wm_class=None, role=None, wm_type=None,
wm_instance_class=None, net_wm_pid=None, func:
Callable[[base.WindowType], bool] | None = None, wid=None)

Match for dynamic groups or auto-floating windows.

It can match by title, wm_class, role, wm_type, wm_instance_class or net_wm_pid.

Match supports both regular expression objects (i.e. the result of re.compile()) or strings (match as an
"include"-match). If a window matches all specified values, it is considered a match.

Parameters
title: matches against the WM_NAME atom (X11) or title (Wayland)

wm_class: matches against the second string in WM_CLASS atom (X11) or app ID (Wayland)

role: matches against the WM_ROLE atom (X11 only)

wm_type: matches against the WM_TYPE atom (X11 only)

wm_instance_class: matches against the first string in WM_CLASS atom (X11) or app ID
(Wayland)

net_wm_pid: matches against the _NET_WM_PID atom (X11) or PID (Wayland) - (only int
allowed for this rule)

func: delegate the match to the given function, which receives the tested client as argument and
must return True if it matches, False otherwise

1.2. Configuration 11

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Rule

class libqtile.config.Rule(match, group=None, float=False, intrusive=False, break_on_match=True)
How to act on a match

A Rule contains a list of Match objects, and a specification about what to do when any of them is matched.

Parameters
match Match object or a list of such associated with this Rule

float auto float this window?

intrusive override the group's exclusive setting?

break_on_match Should we stop applying rules if this rule is matched?

ScratchPad and DropDown

ScratchPad is a special - by default invisible - group which acts as a container for DropDown configurations. A
DropDown can be configured to spawn a defined process and bind thats process' window to it. The associated window
can then be shown and hidden by the lazy command dropdown_toggle() (see Lazy objects) from the ScratchPad
group. Thus - for example - your favorite terminal emulator turns into a quake-like terminal by the control of Qtile.

If the DropDown window turns visible it is placed as a floating window on top of the current group. If the DropDown
is hidden, it is simply switched back to the ScratchPad group.

Example

from libqtile.config import Group, ScratchPad, DropDown, Key
from libqtile.command import lazy
groups = [

ScratchPad("scratchpad", [
define a drop down terminal.
it is placed in the upper third of screen by default.
DropDown("term", "urxvt", opacity=0.8),

define another terminal exclusively for ``qtile shell` at different position
DropDown("qtile shell", "urxvt -hold -e 'qtile shell'",

x=0.05, y=0.4, width=0.9, height=0.6, opacity=0.9,
on_focus_lost_hide=True)]),

Group("a"),
]

keys = [
toggle visibiliy of above defined DropDown named "term"
Key([], 'F11', lazy.group['scratchpad'].dropdown_toggle('term')),
Key([], 'F12', lazy.group['scratchpad'].dropdown_toggle('qtile shell')),

]

Note that if the window is set to not floating, it is detached from DropDown and ScratchPad, and a new process is
spawned next time the DropDown is set visible.

Some programs run in a server-like mode where the spawned process does not directly own the window that is created,
which is instead created by a background process. In this case, the window may not be correctly caught in the scratchpad

12 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

group. To work around this, you can pass a config.Match object to the corresponding Dropdown. See below.

Reference

ScratchPad

class libqtile.config.ScratchPad(name, dropdowns=None, position=9223372036854775807, label='',
single=False)

Represents a "ScratchPad" group

ScratchPad adds a (by default) invisible group to qtile. That group is used as a place for currently not visible
windows spawned by a DropDown configuration.

Parameters
name: string the name of this group

dropdowns: default ``None`` list of DropDown objects

position: int group position

label: string The display name of the ScratchPad group. Defaults to the empty string such that
the group is hidden in GroupList widget.

single [Boolean] Only one of the window among the specified dropdowns will be visible at a
time.

DropDown

class libqtile.config.DropDown(name, cmd, **config)
Configure a specified command and its associated window for the ScratchPad. That window can be shown and
hidden using a configurable keystroke or any other scripted trigger.

key default description
height 0.35 Height of window as fraction of current screen.
match None Use a config.Match to identify the spawned window and move

it to the scratchpad, instead of relying on the window's PID. This
works around some programs that may not be caught by the win-
dow's PID if it does not match the PID of the spawned process.

on_focus_lost_hideTrue Shall the window be hidden if focus is lost? If so, the DropDown
is hidden if window focus or the group is changed.

opacity 0.9 Opacity of window as fraction. Zero is opaque.
warp_pointer True Shall pointer warp to center of window on activation? This has

only effect if any of the on_focus_lost_xxx configurations is True
width 0.8 Width of window as fraction of current screen width
x 0.1 X position of window as fraction of current screen width. 0 is

the left most position.
y 0.0 Y position of window as fraction of current screen height. 0 is

the top most position. To show the window at bottom, you have
to configure a value < 1 and an appropriate height.

1.2. Configuration 13

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Keys

The keys variable defines Qtile's key bindings. Individual key bindings are defined with libqtile.config.Key as
demonstrated in the following example. Note that you may specify more than one callback functions.

from libqtile.config import Key

keys = [
Pressing "Meta + Shift + a".
Key(["mod4", "shift"], "a", callback, ...),

Pressing "Control + p".
Key(["control"], "p", callback, ...),

Pressing "Meta + Tab".
Key(["mod4", "mod1"], "Tab", callback, ...),

]

The above may also be written more concisely with the help of the libqtile.config.EzKey helper class. The
following example is functionally equivalent to the above:

from libqtile.config import EzKey as Key

keys = [
Key("M-S-a", callback, ...),
Key("C-p", callback, ...),
Key("M-A-<Tab>", callback, ...),

]

The EzKey modifier keys (i.e. MASC) can be overwritten through the EzKey.modifier_keys dictionary. The defaults
are:

modifier_keys = {
'M': 'mod4',
'A': 'mod1',
'S': 'shift',
'C': 'control',

}

Callbacks can also be configured to work only under certain conditions by using the when() method. Currently, the
following conditions are supported:

from libqtile.config import Key

keys = [
Only trigger callback for a specific layout
Key(

[mod, 'shift'],
"j",
lazy.layout.grow().when(layout='verticaltile'),
lazy.layout.grow_down().when(layout='columns')

),

Limit action to when the current window is not floating (default True)
(continues on next page)

14 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

Key([mod], "f", lazy.window.toggle_fullscreen().when(when_floating=False))

Also matches are supported on the current window
For example to match on the wm_class for fullscreen do the following
Key([mod], "f", lazy.window.toggle_fullscreen().when(focused=Match(wm_class=

→˓"yourclasshere"))
]

KeyChords

Qtile also allows sequences of keys to trigger callbacks. In Qtile, these sequences are known as chords and are defined
with libqtile.config.KeyChord . Chords are added to the keys section of the config file.

from libqtile.config import Key, KeyChord

keys = [
KeyChord([mod], "z", [

Key([], "x", lazy.spawn("xterm"))
])

]

The above code will launch xterm when the user presses Mod + z, followed by x.

Warning: Users should note that key chords are aborted by pressing <escape>. In the above example, if the user
presses Mod + z, any following key presses will still be sent to the currently focussed window. If <escape> has not
been pressed, the next press of x will launch xterm.

Modes

Chords can optionally specify a "mode". When this is done, the mode will remain active until the user presses <escape>.
This can be useful for configuring a subset of commands for a particular situations (i.e. similar to vim modes).

from libqtile.config import Key, KeyChord

keys = [
KeyChord([mod], "z", [

Key([], "g", lazy.layout.grow()),
Key([], "s", lazy.layout.shrink()),
Key([], "n", lazy.layout.normalize()),
Key([], "m", lazy.layout.maximize())],
mode="Windows"

)
]

In the above example, pressing Mod + z triggers the "Windows" mode. Users can then resize windows by just pressing
g (to grow the window), s to shrink it etc. as many times as needed. To exit the mode, press <escape>.

Note: If using modes, users may also wish to use the Chord widget (libqtile.widget.chord.Chord) as this will

1.2. Configuration 15

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

display the name of the currently active mode on the bar.

Chains

Chords can also be chained to make even longer sequences.

from libqtile.config import Key, KeyChord

keys = [
KeyChord([mod], "z", [

KeyChord([], "x", [
Key([], "c", lazy.spawn("xterm"))

])
])

]

Modes can also be added to chains if required. The following example demonstrates the behaviour when using the
mode argument in chains:

from libqtile.config import Key, KeyChord

keys = [
KeyChord([mod], "z", [

KeyChord([], "y", [
KeyChord([], "x", [

Key([], "c", lazy.spawn("xterm"))
], mode="inner")

])
], mode="outer")

]

After pressing Mod+z y x c, the "inner" mode will remain active. When pressing <escape>, the "inner" mode is exited.
Since the mode in between does not have mode set, it is also left. Arriving at the "outer" mode (which has this argument
set) stops the "leave" action and "outer" now becomes the active mode.

Note: If you want to bind a custom key to leave the current mode (e.g. Control + G in addition to <escape>),
you can specify lazy.ungrab_chord() as the key action. To leave all modes and return to the root bindings, use
lazy.ungrab_all_chords().

Modifiers

On most systems mod1 is the Alt key - you can see which modifiers, which are enclosed in a list, map to which keys
on your system by running the xmodmap command. This example binds Alt-k to the "down" command on the current
layout. This command is standard on all the included layouts, and switches to the next window (where "next" is defined
differently in different layouts). The matching "up" command switches to the previous window.

Modifiers include: "shift", "lock", "control", "mod1", "mod2", "mod3", "mod4", and "mod5". They can be used in
combination by appending more than one modifier to the list:

16 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Key(
["mod1", "control"], "k",
lazy.layout.shuffle_down()

)

Special keys

These are most commonly used special keys. For complete list please see the code. You can create bindings on them
just like for the regular keys. For example Key(["mod1"], "F4", lazy.window.kill()).

Return
BackSpace
Tab
space
Home, End
Left, Up, Right, Down
F1, F2, F3, ...

XF86AudioRaiseVolume
XF86AudioLowerVolume
XF86AudioMute
XF86AudioNext
XF86AudioPrev
XF86MonBrightnessUp
XF86MonBrightnessDown

Reference

Key

class libqtile.config.Key(modifiers: list[str], key: str, *commands, desc: str = '')
Defines a keybinding.

Parameters
modifiers: A list of modifier specifications. Modifier specifications are one of: "shift", "lock",

"control", "mod1", "mod2", "mod3", "mod4", "mod5".

key: A key specification, e.g. "a", "Tab", "Return", "space".

commands: A list of lazy command objects generated with the lazy.lazy helper. If multiple Call
objects are specified, they are run in sequence.

desc: description to be added to the key binding

1.2. Configuration 17

https://github.com/qtile/qtile/blob/master/libqtile/backend/x11/xkeysyms.py

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

KeyChord

class libqtile.config.KeyChord(modifiers: list[str], key: str, submappings: list[libqtile.config.Key |
libqtile.config.KeyChord], mode: str = '')

Define a key chord aka vim like mode

Parameters
modifiers: A list of modifier specifications. Modifier specifications are one of: "shift", "lock",

"control", "mod1", "mod2", "mod3", "mod4", "mod5".

key: A key specification, e.g. "a", "Tab", "Return", "space".

submappings: A list of Key or KeyChord declarations to bind in this chord.

mode: A string with vim like mode name. If it's set, the chord mode will not be left after a
keystroke (except for Esc which always leaves the current chord/mode).

EzConfig

class libqtile.config.EzConfig
Helper class for defining key and button bindings in an emacs-like format. Inspired by Xmonad's
XMonad.Util.EZConfig.

Layouts

A layout is an algorithm for laying out windows in a group on your screen. Since Qtile is a tiling window manager, this
usually means that we try to use space as efficiently as possible, and give the user ample commands that can be bound
to keys to interact with layouts.

The layouts variable defines the list of layouts you will use with Qtile. The first layout in the list is the default. If
you define more than one layout, you will probably also want to define key bindings to let you switch to the next and
previous layouts.

See Built-in Layouts for a listing of available layouts.

Example

from libqtile import layout
layouts = [

layout.Max(),
layout.Stack(stacks=2)

]

18 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Mouse

The mouse config file variable defines a set of global mouse actions, and is a list of Click and Drag objects, which
define what to do when a window is clicked or dragged.

Example

from libqtile.config import Click, Drag
mouse = [

Drag([mod], "Button1", lazy.window.set_position_floating(),
start=lazy.window.get_position()),

Drag([mod], "Button3", lazy.window.set_size_floating(),
start=lazy.window.get_size()),

Click([mod], "Button2", lazy.window.bring_to_front())
]

The above example can also be written more concisely with the help of the EzClick and EzDrag helpers:

from libqtile.config import EzClick as Click, EzDrag as Drag

mouse = [
Drag("M-1", lazy.window.set_position_floating(),

start=lazy.window.get_position()),
Drag("M-3", lazy.window.set_size_floating(),

start=lazy.window.get_size()),
Click("M-2", lazy.window.bring_to_front())

]

Reference

Click

class libqtile.config.Click(modifiers: list[str], button: str, *commands, **kwargs)
Defines binding of a mouse click

Drag

class libqtile.config.Drag(*args, start=False, **kwargs)
Defines binding of a mouse to some dragging action

On each motion event command is executed with two extra parameters added x and y offset from previous move.

1.2. Configuration 19

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Screens

The screens configuration variable is where the physical screens, their associated bars, and the widgets contained
within the bars are defined (see Built-in Widgets for a listing of available widgets).

Example

Tying together screens, bars and widgets, we get something like this:

from libqtile.config import Screen
from libqtile import bar, widget

screens = [
Screen(

bottom=bar.Bar([
widget.GroupBox(),
widget.WindowName()
], 30),

),
Screen(

bottom=bar.Bar([
widget.GroupBox(),
widget.WindowName()
], 30),

)
]

Bars support both solid background colors and gradients by supplying a list of colors that make up a linear gradient.
For example, bar.Bar(..., background="#000000") will give you a black back ground (the default), while bar.
Bar(..., background=["#000000", "#FFFFFF"]) will give you a background that fades from black to white.

Bars (and widgets) also support transparency by adding an alpha value to the desired color. For example, bar.Bar(.
.., background="#00000000") will result in a fully transparent bar. Widget contents will not be impacted i.e. this
is different to the opacity parameter which sets the transparency of the entire window.

Note: In X11 backends, transparency will be disabled in a bar if the background color is fully opaque.

Users can add borders to the bar by using the border_width and border_color parameters. Providing a single value
sets the value for all four sides while sides can be customised individually by setting four values in a list (top, right,
bottom, left) e.g. border_width=[2, 0, 2, 0] would draw a border 2 pixels thick on the top and bottom of the bar.

Multiple Screens

You will see from the example above that screens is a list of individual Screen objects. The order of the screens in
this list should match the order of screens as seen by your display server.

20 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

X11

You can view the current order of your screens by running xrandr --listmonitors.

Examples of how to set the order of your screens can be found on the Arch wiki.

Wayland

The Wayland backend supports the wlr-output-management protocol for configuration of outputs by tools such as Kan-
shi.

Fake Screens

instead of using the variable screens the variable fake_screens can be used to set split a physical monitor into multiple
screens. They can be used like this:

from libqtile.config import Screen
from libqtile import bar, widget

screens look like this
600 300
|-------------|-----|
| 480| |580
| A | B |
|----------|--| |
| 400|--|-----|
| C | |400
|----------| D |
500 |--------|
400
#
Notice there is a hole in the middle
also D goes down below the others

fake_screens = [
Screen(

bottom=bar.Bar(
[

widget.Prompt(),
widget.Sep(),
widget.WindowName(),
widget.Sep(),
widget.Systray(),
widget.Sep(),
widget.Clock(format='%H:%M:%S %d.%m.%Y')

],
24,
background="#555555"

),
x=0,
y=0,
width=600,

(continues on next page)

1.2. Configuration 21

https://wiki.archlinux.org/title/Multihead
https://github.com/emersion/kanshi
https://github.com/emersion/kanshi

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

height=480
),
Screen(

top=bar.Bar(
[

widget.GroupBox(),
widget.WindowName(),
widget.Clock()

],
30,

),
x=600,
y=0,
width=300,
height=580

),
Screen(

top=bar.Bar(
[

widget.GroupBox(),
widget.WindowName(),
widget.Clock()

],
30,

),
x=0,
y=480,
width=500,
height=400

),
Screen(

top=bar.Bar(
[

widget.GroupBox(),
widget.WindowName(),
widget.Clock()

],
30,

),
x=500,
y=580,
width=400,
height=400

),
]

22 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Third-party bars

There might be some reasons to use third-party bars. For instance you can come from another window manager and
you have already configured dzen2, xmobar, or something else. They definitely can be used with Qtile too. In fact, any
additional configurations aren't needed. Just run the bar and qtile will adapt.

Reference

Screen

class libqtile.config.Screen(top: BarType | None = None, bottom: BarType | None = None, left: BarType |
None = None, right: BarType | None = None, wallpaper: str | None = None,
wallpaper_mode: str | None = None, x: int | None = None, y: int | None =
None, width: int | None = None, height: int | None = None)

A physical screen, and its associated paraphernalia.

Define a screen with a given set of Bars of a specific geometry. Note that bar.Bar objects can only be placed at
the top or the bottom of the screen (bar.Gap objects can be placed anywhere). Also, x, y, width, and height
aren't specified usually unless you are using 'fake screens'.

The wallpaper parameter, if given, should be a path to an image file. How this image is painted to the screen
is specified by the wallpaper_mode parameter. By default, the image will be placed at the screens origin and
retain its own dimensions. If the mode is 'fill', the image will be centred on the screen and resized to fill it. If the
mode is 'stretch', the image is stretched to fit all of it into the screen.

Bar

class libqtile.bar.Bar(widgets, size, **config)
A bar, which can contain widgets

Parameters
widgets A list of widget objects.

size The "thickness" of the bar, i.e. the height of a horizontal bar, or the width of a vertical bar.

key default description
background '#000000' Background colour.
border_color '#000000' Border colour as str or list of str [N E S W]
border_width 0 Width of border as int of list of ints [N E S W]
margin 0 Space around bar as int or list of ints [N E S W].
opacity 1 Bar window opacity.

1.2. Configuration 23

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Gap

class libqtile.bar.Gap(size)
A gap placed along one of the edges of the screen

If a gap has been defined, Qtile will avoid covering it with windows. The most probable reason for configuring
a gap is to make space for a third-party bar or other static window.

Parameters
size The "thickness" of the gap, i.e. the height of a horizontal gap, or the width of a vertical gap.

Hooks

Qtile provides a mechanism for subscribing to certain events in libqtile.hook. To subscribe to a hook in your
configuration, simply decorate a function with the hook you wish to subscribe to.

See Built-in Hooks for a listing of available hooks.

Examples

Automatic floating dialogs

Let's say we wanted to automatically float all dialog windows (this code is not actually necessary; Qtile floats all dialogs
by default). We would subscribe to the client_new hook to tell us when a new window has opened and, if the type is
"dialog", as can set the window to float. In our configuration file it would look something like this:

from libqtile import hook

@hook.subscribe.client_new
def floating_dialogs(window):

dialog = window.window.get_wm_type() == 'dialog'
transient = window.window.get_wm_transient_for()
if dialog or transient:

window.floating = True

A list of available hooks can be found in the Built-in Hooks reference.

Autostart

If you want to run commands or spawn some applications when Qtile starts, you'll want to look at the startup and
startup_once hooks. startup is emitted every time Qtile starts (including restarts), whereas startup_once is only
emitted on the very first startup.

Let's create an executable file ~/.config/qtile/autostart.sh that will start a few programs when Qtile first runs.
Remember to chmod +x this file so that it can be executed.

#!/bin/sh
pidgin &
dropbox start &

We can then subscribe to startup_once to run this script:

24 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

import os
import subprocess

from libqtile import hook

@hook.subscribe.startup_once
def autostart():

home = os.path.expanduser('~/.config/qtile/autostart.sh')
subprocess.run([home])

Accessing the qtile object

If you want to do something with the Qtile manager instance inside a hook, it can be imported into your config:

from libqtile import qtile

Async hooks

Hooks can also be defined as coroutine functions using async def, which will run them asynchronously in the event
loop:

@hook.subscribe.focus_change
async def _():

...

In addition to the above variables, there are several other boolean configuration variables that control specific aspects
of Qtile's behavior:

1.2. Configuration 25

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

vari-
able

default description

auto_fullscreenTrue If a window requests to be fullscreen, it is automatically fullscreened. Set this to false if you
only want windows to be fullscreen if you ask them to be.

bring_front_clickFalse When clicked, should the window be brought to the front or not. If this is set to "float-
ing_only", only floating windows will get affected (This sets the X Stack Mode to Above.)

cursor_warpFalse If true, the cursor follows the focus as directed by the keyboard, warping to the center of
the focused window. When switching focus between screens, If there are no windows in the
screen, the cursor will warp to the center of the screen.

dgroups_key_binderNone A function which generates group binding hotkeys. It takes a single argument, the DGroups
object, and can use that to set up dynamic key bindings.
A sample implementation is available in libqtile/dgroups.py called simple_key_binder(),
which will bind groups to mod+shift+0-10 by default.

dgroups_app_rules[] A list of Rule objects which can send windows to various groups based on matching criteria.
extension_defaultssame as

widget_defaults
Default settings for extensions.

floating_layoutlayout.
Floating(float_rules=[.
..])

The default floating layout to use. This allows you to set custom floating rules among other
things if you wish.
See the configuration file for the default float_rules.

focus_on_window_activation'smart' Behavior of the _NET_ACTIVATE_WINDOW message sent by applications
• urgent: urgent flag is set for the window
• focus: automatically focus the window
• smart: automatically focus if the window is in the current group
• never: never automatically focus any window that requests it

follow_mouse_focusTrue Controls whether or not focus follows the mouse around as it moves across windows in a
layout.

widget_defaultsdict(font='sans',

fontsize=12,

padding=3)

Default settings for bar widgets. Note: if the font file associated with the font selected here
is modified while Qtile is running, Qtile may segfault (for details see issue #2656).

reconfigure_screensTrue Controls whether or not to automatically reconfigure screens when there are changes in randr
output configuration.

wmname 'LG3D' Gasp! We're lying here. In fact, nobody really uses or cares about this string besides java
UI toolkits; you can see several discussions on the mailing lists, GitHub issues, and other
WM documentation that suggest setting this string if your java app doesn't work correctly.
We may as well just lie and say that we're a working one by default. We choose LG3D to
maximize irony: it is a 3D non-reparenting WM written in java that happens to be on java's
whitelist.

auto_minimizeTrue If things like steam games want to auto-minimize themselves when losing focus, should we
respect this or not?

26 Chapter 1. Getting started

https://github.com/qtile/qtile/blob/master/libqtile/dgroups.py
https://github.com/qtile/qtile/issues/2656

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

1.2.4 Testing your configuration

The best way to test changes to your configuration is with the provided Xephyr script. This will run Qtile with your
config.py inside a nested X server and prevent your running instance of Qtile from crashing if something goes wrong.

See Hacking Qtile for more information on using Xephyr.

1.2.5 Starting Qtile

There are several ways to start Qtile. The most common way is via an entry in your X session manager's menu. The
default Qtile behavior can be invoked by creating a qtile.desktop file in /usr/share/xsessions.

A second way to start Qtile is a custom X session. This way allows you to invoke Qtile with custom arguments, and
also allows you to do any setup you want (e.g. special keyboard bindings like mapping caps lock to control, setting
your desktop background, etc.) before Qtile starts. If you're using an X session manager, you still may need to create a
custom.desktop file similar to the qtile.desktop file above, but with Exec=/etc/X11/xsession. Then, create
your own ~/.xsession. There are several examples of user defined xsession s in the qtile-examples repository.

If there is no display manager such as SDDM, LightDM or other and there is need to start Qtile directly from ~/.
xinitrc do that by adding exec qtile start at the end.

In very special cases, ex. Qtile crashing during session, then suggestion would be to start through a loop to save running
applications:

while true; do
qtile

done

Finally, if you're a gnome user, you can start integrate Qtile into Gnome's session manager and use gnome as usual.

Running from systemd

This case will cover automatic login to Qtile after booting the system without using display manager. It logins in virtual
console and init X by running through session.

Automatic login to virtual console

To get login into virtual console as an example edit getty service by running systemctl edit getty@tty1 and add instruc-
tions to /etc/systemd/system/getty@tty1.service.d/override.conf :

[Service]
ExecStart=
ExecStart=-/usr/bin/agetty --autologin username --noclear %I $TERM

username should be changed to current user name.

Check more for other examples.

1.2. Configuration 27

https://github.com/qtile/qtile/blob/master/resources/qtile.desktop
https://github.com/qtile/qtile-examples
https://wiki.archlinux.org/index.php/Getty#Automatic_login_to_virtual_console

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Autostart X session

After login X session should be started. That can be done by .bash_profile if bash is used or .zprofile in case of zsh.
Other shells can be adjusted by given examples.

if systemctl -q is-active graphical.target && [[! $DISPLAY && $XDG_VTNR -eq 1]]; then
exec startx

fi

And to start Qtile itself .xinitrc should be fixed:

some apps that should be started before Qtile, ex.
#
[[-f ~/.Xresources]] && xrdb -merge ~/.Xresources
~/.fehbg &
nm-applet &
blueman-applet &
dunst &
#
or
#
source ~/.xsession

exec qtile start

Running Inside Gnome

Add the following snippet to your Qtile configuration. As per this page, it registers Qtile with gnome-session. Without
it, a "Something has gone wrong!" message shows up a short while after logging in. dbus-send must be on your $PATH.

import subprocess
import os
from libqtile import hook

@hook.subscribe.startup
def dbus_register():

id = os.environ.get('DESKTOP_AUTOSTART_ID')
if not id:

return
subprocess.Popen(['dbus-send',

'--session',
'--print-reply',
'--dest=org.gnome.SessionManager',
'/org/gnome/SessionManager',
'org.gnome.SessionManager.RegisterClient',
'string:qtile',
'string:' + id])

This adds a new entry "Qtile GNOME" to GDM's login screen.

$ cat /usr/share/xsessions/qtile_gnome.desktop
[Desktop Entry]

(continues on next page)

28 Chapter 1. Getting started

https://wiki.gnome.org/Projects/SessionManagement/GnomeSession#A3._Register

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

Name=Qtile GNOME
Comment=Tiling window manager
TryExec=/usr/bin/gnome-session
Exec=gnome-session --session=qtile
Type=XSession

The custom session for gnome-session.

For Gnome >= 3.23.2 (Ubuntu >= 17.04, Fedora >= 26, etc.)

$ cat /usr/share/gnome-session/sessions/qtile.session
[GNOME Session]
Name=Qtile session
RequiredComponents=qtile;org.gnome.SettingsDaemon.A11ySettings;org.gnome.SettingsDaemon.
→˓Clipboard;org.gnome.SettingsDaemon.Color;org.gnome.SettingsDaemon.Datetime;org.gnome.
→˓SettingsDaemon.Housekeeping;org.gnome.SettingsDaemon.Keyboard;org.gnome.SettingsDaemon.
→˓MediaKeys;org.gnome.SettingsDaemon.Mouse;org.gnome.SettingsDaemon.Power;org.gnome.
→˓SettingsDaemon.PrintNotifications;org.gnome.SettingsDaemon.Rfkill;org.gnome.
→˓SettingsDaemon.ScreensaverProxy;org.gnome.SettingsDaemon.Sharing;org.gnome.
→˓SettingsDaemon.Smartcard;org.gnome.SettingsDaemon.Sound;org.gnome.SettingsDaemon.Wacom;
→˓org.gnome.SettingsDaemon.XSettings;

Or for older Gnome versions

$ cat /usr/share/gnome-session/sessions/qtile.session
[GNOME Session]
Name=Qtile session
RequiredComponents=qtile;gnome-settings-daemon;

So that Qtile starts automatically on login.

$ cat /usr/share/applications/qtile.desktop
[Desktop Entry]
Type=Application
Encoding=UTF-8
Name=Qtile
Exec=qtile start
NoDisplay=true
X-GNOME-WMName=Qtile
X-GNOME-Autostart-Phase=WindowManager
X-GNOME-Provides=windowmanager
X-GNOME-Autostart-Notify=false

The above does not start gnome-panel. Getting gnome-panel to work requires some extra Qtile configuration, mainly
making the top and bottom panels static on panel startup and leaving a gap at the top (and bottom) for the panel window.

You might want to add keybindings to log out of the GNOME session.

Key([mod, 'control'], 'l', lazy.spawn('gnome-screensaver-command -l')),
Key([mod, 'control'], 'q', lazy.spawn('gnome-session-quit --logout --no-prompt')),
Key([mod, 'shift', 'control'], 'q', lazy.spawn('gnome-session-quit --power-off')),

The above apps need to be in your path (though they are typically installed in /usr/bin, so they probably are if they're
installed at all).

1.2. Configuration 29

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

1.3 Troubleshooting

1.3.1 So something has gone wrong... what do you do?

When Qtile is running, it logs error messages (and other messages) to its log file. This is found at ~/.local/share/
qtile/qtile.log. This is the first place to check to see what is going on. If you are getting unexpected errors from
normal usage or your configuration (and you're not doing something wacky) and believe you have found a bug, then
please report a bug.

If you are hacking on Qtile and you want to debug your changes, this log is your best friend. You can send messages to
the log from within libqtile by using the logger:

from libqtile.log_utils import logger

logger.warning("Your message here")
logger.warning(variable_you_want_to_print)

try:
some changes here that might error

raise Exception as e:
logger.exception(e)

logger.warning is convenient because its messages will always be visibile in the log. logger.exception is helpful
because it will print the full traceback of an error to the log. By sticking these amongst your changes you can look more
closely at the effects of any changes you made to Qtile's internals.

1.3.2 Capturing an xtrace

Occasionally, a bug will be low level enough to require an xtrace of Qtile's conversations with the X server. To capture
one of these, create an xinitrc or similar file with:

exec xtrace qtile >> ~/qtile.log

This will put the xtrace output in Qtile's logfile as well. You can then demonstrate the bug, and paste the contents of
this file into the bug report.

Note that xtrace may be named x11trace on some platforms, for example, on Fedora.

1.4 Running Qtile as a Wayland Compositor

Some functionality may not yet be implemented in the Wayland compositor. Please see the discussion here to see the
current state of development.

30 Chapter 1. Getting started

https://github.com/qtile/qtile/discussions/2409

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

1.4.1 Backend-Specific Configuration

If you want your config file to work with different backends but want some options set differently per backend, you can
check the name of the current backend in your config as follows:

from libqtile import qtile

if qtile.core.name == "x11":
term = "urxvt"

elif qtile.core.name == "wayland":
term = "foot"

1.4.2 Running X11-Only Programs

Qtile _does_ support XWayland. This requires that wlroots and pywlroots were built with XWayland support, and that
XWayland is installed on the system from startup. XWayland will be started the first time it is needed.

1.4.3 Input Device Configuration

InputConfig

class libqtile.backend.wayland.InputConfig(**config: dict[str, Any])
This is used to configure input devices. An instance of this class represents one set of settings that can be applied
to an input device.

To use this, define a dictionary called wl_input_rules in your config. The keys are used to match input devices,
and the values are instances of this class with the desired settings. For example:

from libqtile.backend.wayland import InputConfig

wl_input_rules = {
"1267:12377:ELAN1300:00 04F3:3059 Touchpad": InputConfig(left_handed=True),
"*": InputConfig(left_handed=True, pointer_accel=True),
"type:keyboard": InputConfig(xkb_options="caps:swapescape"),

}

When a input device is being configured, the most specific matching key in the dictionary is found and the
corresponding settings are used to configure the device. Unique identifiers are chosen first, then "type:X", then
"*".

Options default to None, leave a device's default settings intact. For information on what each option does, see
the documenation for libinput: https://wayland.freedesktop.org/libinput/doc/latest/configuration.html. Note that
devices often only support a subset of settings.

This tries to mirror how Sway configures libinput devices. For more information check out sway-input(5): https:
//man.archlinux.org/man/sway-input.5#LIBINPUT_CONFIGURATION

Keyboards, managed by xkbcommon, are configured with the options prefixed by kb_. X11's helpful XKB guide
may be useful for figuring out the syntax for some of these settings.

1.4. Running Qtile as a Wayland Compositor 31

https://wayland.freedesktop.org/libinput/doc/latest/configuration.html
https://man.archlinux.org/man/sway-input.5#LIBINPUT_CONFIGURATION
https://man.archlinux.org/man/sway-input.5#LIBINPUT_CONFIGURATION
https://github.com/xkbcommon/libxkbcommon
https://www.x.org/releases/X11R7.5/doc/input/XKB-Config.html

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
accel_profile None 'adaptive' or 'flat'
click_method None 'none', 'button_areas' or 'clickfinger'
drag None True or False
drag_lock None True or False
dwt None True or False
kb_layout None Keyboard layout i.e. XKB_DEFAULT_LAYOUT
kb_options None Keyboard options i.e. XKB_DEFAULT_OPTIONS
kb_repeat_delay 600 Keyboard delay in milliseconds before repeating
kb_repeat_rate 25 Keyboard key repeats made per second
kb_variant None Keyboard variant i.e. XKB_DEFAULT_VARIANT
left_handed None True or False
middle_emulation None True or False
natural_scroll None True or False
pointer_accel None A float between -1 and 1.
scroll_button None 'disable', 'Button[1-3,8,9]' or a keycode
scroll_method None 'none', 'two_finger', 'edge', or 'on_button_down'
tap None True or False
tap_button_map None 'lrm' or 'lmr'

If you want to change keyboard configuration during runtime, you can use the core's set_keymap command (see below).

1.4.4 Core Commands

Core

class libqtile.backend.wayland.core.Core
cmd_change_vt(vt: int)→ bool

Change virtual terminal to that specified

cmd_commands()→ list[str]
Returns a list of possible commands for this object

Used by __qsh__ for command completion and online help

cmd_doc(name)→ str
Returns the documentation for a specified command name

Used by __qsh__ to provide online help.

cmd_eval(code: str)→ tuple[bool, str | None]
Evaluates code in the same context as this function

Return value is tuple (success, result), success being a boolean and result being a string representing the
return value of eval, or None if exec was used instead.

cmd_function(function, *args, **kwargs)→ None
Call a function with current object as argument

cmd_info()→ dict
Get basic information about the running backend.

cmd_items(name)→ tuple[bool, list[str | int] | None]
Returns a list of contained items for the specified name

Used by __qsh__ to allow navigation of the object graph.

32 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

cmd_set_keymap(layout: Optional[str] = None, options: Optional[str] = None, variant: Optional[str] =
None)→ None

Set the keymap for the current keyboard.

The options correspond to xkbcommon configuration environmental variables and if not specified are taken
from the environment. Acceptable values are strings identical to those accepted by the env variables.

1.5 Shell commands

qtile uses a subcommand structure; various subcommands are listed below. Additionally, two other commands available
in the scripts/ section of the repository are also documented below.

1.5.1 qtile start

This is the entry point for the window manager, and what you should run from your .xsession or similar. This will
make an attempt to detect if qtile is already running and fail if it is. See qtile start --help for more details.

1.5.2 qtile shell

The Qtile command shell is a command-line shell interface that provides access to the full complement of Qtile com-
mand functions. The shell features command name completion, and full command documentation can be accessed from
the shell itself. The shell uses GNU Readline when it's available, so the interface can be configured to, for example,
obey VI keybindings with an appropriate .inputrc file. See the GNU Readline documentation for more information.

Navigating the Object Graph

The shell presents a filesystem-like interface to the object graph - the builtin "cd" and "ls" commands act like their
familiar shell counterparts:

> ls
layout/ widget/ screen/ bar/ window/ group/

> cd screen
layout/ window/ bar/ widget/

> cd ..
/

> ls
layout/ widget/ screen/ bar/ window/ group/

If you try to access an object that has no "default" value then you will see an error message:

> ls
layout/ widget/ screen/ bar/ window/ group/

> cd bar
Item required for bar

> ls bar
(continues on next page)

1.5. Shell commands 33

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

bar[bottom]/

> cd bar/bottom
bar['bottom']> ls
screen/ widget/

Please refer to Keys for a summary of which objects need a specified selector and the type of selector required. Using
ls will show which selectors are available for an object. Please see below for an explanation about how Qtile displays
shell paths.

Alternatively, the items() command can be run on the parent object to show which selectors are available. The first
value shows whether a selector is optional (False means that a selector is required) and the second value is a list of
selectors:

> ls
layout/ widget/ screen/ bar/ window/ group/

> items(bar)
(False, ['bottom'])

Displaying the shell path

Note that the shell provides a "short-hand" for specifying node keys (as opposed to children). The following is a valid
shell path:

> cd group/4/window/31457314

The command prompt will, however, always display the Python node path that should be used in scripts and key
bindings:

group['4'].window[31457314]>

Live Documentation

The shell help command provides the canonical documentation for the Qtile API:

> cd layout/1

layout[1]> help
help command -- Help for a specific command.

Builtins
========
cd exit help ls q quit

Commands for this object
========================
add commands current delete doc
down get_info items next previous
rotate shuffle_down shuffle_up toggle_split up

(continues on next page)

34 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

layout[1]> help previous
previous()
Focus previous stack.

1.5.3 qtile cmd-obj

This is a simple tool to expose qtile.command functionality to shell. This can be used standalone or in other shell
scripts.

How it works

qtile cmd-obj works by selecting a command object and calling a specified function of that object.

As per Commands API , Qtile's object graph has seven nodes: layout, window, group, bar, widget, screen, and a
special root node. These are the objects that can be accessed via qtile cmd-obj (NB the root node is called cmd
when using the cmd-obj script to give it an addressable name).

Running the command against a selected object without a function (-f) will run the help command and list the com-
mands available to the object. Commands shown with an asterisk ("*") require arguments to be passed via the -a
flag.

Selecting an object

With the exception of cmd, all objects need an identifier so the correct object can be selected. Refer to Keys for more
information.

Note: You will see from the graph on Commands API that certain objects can be accessed from other objects. For
example, qtile cmd-obj -o group term layout will list the commands for the current layout on the term group.

Information on functions

Running a function with the -i flag will provide additional detail about that function (i.e. what it does and what
arguments it expects).

Passing arguments to functions

Arguments can be passed to a function by using the -a flag. For example, to change the label for the group named "1"
to "A", you would run qtile cmd-obj -o group 1 -f set_label -a A.

Warning: It is not currently possible to pass non-string arguments to functions via qtile cmd-obj. Doing so
will result in an error.

1.5. Shell commands 35

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Examples:

Output of qtile cmd-obj -h

usage: qtile cmd-obj [-h] [--object OBJ_SPEC [OBJ_SPEC ...]]
[--function FUNCTION] [--args ARGS [ARGS ...]] [--info]

Simple tool to expose qtile.command functionality to shell.

optional arguments:
-h, --help show this help message and exit
--object OBJ_SPEC [OBJ_SPEC ...], -o OBJ_SPEC [OBJ_SPEC ...]

Specify path to object (space separated). If no
--function flag display available commands.

--function FUNCTION, -f FUNCTION
Select function to execute.

--args ARGS [ARGS ...], -a ARGS [ARGS ...]
Set arguments supplied to function.

--info, -i With both --object and --function args prints
documentation for function.

Examples:
qtile cmd-obj
qtile cmd-obj -o cmd
qtile cmd-obj -o cmd -f prev_layout -i
qtile cmd-obj -o cmd -f prev_layout -a 3 # prev_layout on group 3
qtile cmd-obj -o group 3 -f focus_back
qtile cmd-obj -o widget textbox -f update -a "New text"
qtile cmd-obj -o cmd -f restart # restart qtile

Output of qtile cmd-obj -o group 3

-o group 3 -f commands Returns a list of possible commands for this object
-o group 3 -f doc * Returns the documentation for a specified command name
-o group 3 -f eval * Evaluates code in the same context as this function
-o group 3 -f focus_back Focus the window that had focus before the current one␣
→˓got it.
-o group 3 -f focus_by_name * Focus the first window with the given name. Do nothing␣
→˓if the name is
-o group 3 -f function * Call a function with current object as argument
-o group 3 -f info Returns a dictionary of info for this group
-o group 3 -f info_by_name * Get the info for the first window with the given name␣
→˓without giving it
-o group 3 -f items * Returns a list of contained items for the specified␣
→˓name
-o group 3 -f next_window Focus the next window in group.
-o group 3 -f prev_window Focus the previous window in group.
-o group 3 -f set_label * Set the display name of current group to be used in␣
→˓GroupBox widget.
-o group 3 -f setlayout
-o group 3 -f switch_groups * Switch position of current group with name

(continues on next page)

36 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

-o group 3 -f toscreen * Pull a group to a specified screen.
-o group 3 -f unminimize_all Unminimise all windows in this group

Output of qtile cmd-obj -o cmd

-o cmd -f add_rule * Add a dgroup rule, returns rule_id needed to remove it
-o cmd -f addgroup * Add a group with the given name
-o cmd -f commands Returns a list of possible commands for this object
-o cmd -f critical Set log level to CRITICAL
-o cmd -f debug Set log level to DEBUG
-o cmd -f delgroup * Delete a group with the given name
-o cmd -f display_kb * Display table of key bindings
-o cmd -f doc * Returns the documentation for a specified command name
-o cmd -f error Set log level to ERROR
-o cmd -f eval * Evaluates code in the same context as this function
-o cmd -f findwindow * Launch prompt widget to find a window of the given name
-o cmd -f focus_by_click * Bring a window to the front
-o cmd -f function * Call a function with current object as argument
-o cmd -f get_info Prints info for all groups
-o cmd -f get_state Get pickled state for restarting qtile
-o cmd -f get_test_data Returns any content arbitrarily set in the self.test_
→˓data attribute.
-o cmd -f groups Return a dictionary containing information for all␣
→˓groups
-o cmd -f hide_show_bar * Toggle visibility of a given bar
-o cmd -f info Set log level to INFO
-o cmd -f internal_windows Return info for each internal window (bars, for␣
→˓example)
-o cmd -f items * Returns a list of contained items for the specified␣
→˓name
-o cmd -f list_widgets List of all addressible widget names
-o cmd -f next_layout * Switch to the next layout.
-o cmd -f next_screen Move to next screen
-o cmd -f next_urgent Focus next window with urgent hint
-o cmd -f pause Drops into pdb
-o cmd -f prev_layout * Switch to the previous layout.
-o cmd -f prev_screen Move to the previous screen
-o cmd -f qtile_info Returns a dictionary of info on the Qtile instance
-o cmd -f qtilecmd * Execute a Qtile command using the client syntax
-o cmd -f remove_rule * Remove a dgroup rule by rule_id
-o cmd -f restart Restart qtile
-o cmd -f run_extension * Run extensions
-o cmd -f run_external * Run external Python script
-o cmd -f screens Return a list of dictionaries providing information on␣
→˓all screens
-o cmd -f shutdown Quit Qtile
-o cmd -f simulate_keypress * Simulates a keypress on the focused window.
-o cmd -f spawn * Run cmd in a shell.
-o cmd -f spawncmd * Spawn a command using a prompt widget, with tab-
→˓completion.

(continues on next page)

1.5. Shell commands 37

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

-o cmd -f status Return "OK" if Qtile is running
-o cmd -f switch_groups * Switch position of groupa to groupb
-o cmd -f switchgroup * Launch prompt widget to switch to a given group to the␣
→˓current screen
-o cmd -f sync Sync the X display. Should only be used for development
-o cmd -f to_layout_index * Switch to the layout with the given index in self.
→˓layouts.
-o cmd -f to_screen * Warp focus to screen n, where n is a 0-based screen␣
→˓number
-o cmd -f togroup * Launch prompt widget to move current window to a given␣
→˓group
-o cmd -f tracemalloc_dump Dump tracemalloc snapshot
-o cmd -f tracemalloc_toggle Toggle tracemalloc status
-o cmd -f warning Set log level to WARNING
-o cmd -f windows Return info for each client window

1.5.4 qtile run-cmd

Run a command applying rules to the new windows, ie, you can start a window in a specific group, make it floating,
intrusive, etc.

The Windows must have NET_WM_PID.

run xterm floating on group "test-group"
qtile run-cmd -g test-group -f xterm

1.5.5 qtile top

qtile top is a top-like tool to measure memory usage of Qtile's internals.

Note: To use qtile shell you need to have tracemalloc enabled. You can do this by setting the environmental
variable PYTHONTRACEMALLOC=1 before starting qtile. Alternatively, you can force start tracemalloc but you will
lose early traces:

>>> from libqtile.command.client import InteractiveCommandClient
>>> i=InteractiveCommandClient()
>>> i.eval("import tracemalloc;tracemalloc.start()")

1.5.6 dqtile-cmd

A Rofi/dmenu interface to qtile-cmd. Accepts all arguments of qtile-cmd.

38 Chapter 1. Getting started

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Examples:

Output of dqtile-cmd -o cmd

Output of dqtile-cmd -h

dqtile-cmd

A Rofi/dmenu interface to qtile-cmd. Excepts all arguments of qtile-cmd
(see below).

usage: dqtile-cmd [-h] [--object OBJ_SPEC [OBJ_SPEC ...]]
[--function FUNCTION] [--args ARGS [ARGS ...]] [--info]

Simple tool to expose qtile.command functionality to shell.

optional arguments:
-h, --help show this help message and exit
--object OBJ_SPEC [OBJ_SPEC ...], -o OBJ_SPEC [OBJ_SPEC ...]

Specify path to object (space separated). If no
--function flag display available commands.

--function FUNCTION, -f FUNCTION
Select function to execute.

--args ARGS [ARGS ...], -a ARGS [ARGS ...]
Set arguments supplied to function.

--info, -i With both --object and --function args prints
documentation for function.

Examples:
dqtile-cmd
dqtile-cmd -o cmd

(continues on next page)

1.5. Shell commands 39

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

dqtile-cmd -o cmd -f prev_layout -i
dqtile-cmd -o cmd -f prev_layout -a 3 # prev_layout on group 3
dqtile-cmd -o group 3 -f focus_back

If both rofi and dmenu are present rofi will be selected as default, to change this us --
→˓force-dmenu as the first argument.

1.5.7 iqshell

In addition to the standard qtile shell shell interface, we provide a kernel capable of running through Jupyter that
hooks into the qshell client. The command structure and syntax is the same as qshell, so it is recommended you read
that for more information about that.

Dependencies

In order to run iqshell, you must have ipykernel and jupyter_console. You can install the dependencies when you are
installing qtile by running:

$ pip install qtile[ipython]

Otherwise, you can just install these two packages separately, either through PyPI or through your distribution package
manager.

Installing and Running the Kernel

Once you have the required dependencies, you can run the kernel right away by running:

$ python3 -m libqtile.interactive.iqshell_kernel

However, this will merely spawn a kernel instance, you will have to run a separate frontend that connects to this kernel.

A more convenient way to run the kernel is by registering the kernel with Jupyter. To register the kernel itself, run:

$ python3 -m libqtile.interactive.iqshell_install

If you run this as a non-root user, or pass the --user flag, this will install to the user Jupyter kernel directory. You can
now invoke the kernel directly when starting a Jupyter frontend, for example:

$ jupyter console --kernel qshell

The iqshell script will launch a Jupyter terminal console with the qshell kernel.

40 Chapter 1. Getting started

https://pypi.python.org/pypi/ipykernel
https://pypi.python.org/pypi/jupyter_console

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

iqshell vs qtile shell

One of the main drawbacks of running through a Jupyter kernel is the frontend has no way to query the current node of
the kernel, and as such, there is no way to set a custom prompt. In order to query your current node, you can call pwd.

This, however, enables many of the benefits of running in a Jupyter frontend, including being able to save, run, and
re-run code cells in frontends such as the Jupyter notebook.

The Jupyter kernel also enables more advanced help, text completion, and introspection capabilities (however, these
are currently not implemented at a level much beyond what is available in the standard qtile shell).

1.5. Shell commands 41

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

42 Chapter 1. Getting started

CHAPTER

TWO

REFERENCE

2.1 Built-in Extensions

2.1.1 CommandSet

class libqtile.extension.CommandSet(**config)
Give list of commands to be executed in dmenu style.

ex. manage mocp deamon:

Key([mod], 'm', lazy.run_extension(extension.CommandSet(
commands={

'play/pause': '[$(mocp -i | wc -l) -lt 2] && mocp -p || mocp -G',
'next': 'mocp -f',
'previous': 'mocp -r',
'quit': 'mocp -x',
'open': 'urxvt -e mocp',
'shuffle': 'mocp -t shuffle',
'repeat': 'mocp -t repeat',
},

pre_commands=['[$(mocp -i | wc -l) -lt 1] && mocp -S'],
**Theme.dmenu))),

key default description
background None defines the normal background color (#RGB or #RRGGBB)
command None the command to be launched (string or list with arguments)
commands None dictionary of commands where key is runable command
dmenu_bottom False dmenu appears at the bottom of the screen
dmenu_command 'dmenu' the dmenu command to be launched
dmenu_font None override the default 'font' and 'fontsize' options for dmenu
dmenu_height None defines the height (only supported by some dmenu forks)
dmenu_ignorecase False dmenu matches menu items case insensitively
dmenu_lines None dmenu lists items vertically, with the given number of lines
dmenu_prompt None defines the prompt to be displayed to the left of the input field
font 'sans' defines the font name to be used
fontsize None defines the font size to be used
foreground None defines the normal foreground color (#RGB or #RRGGBB)
pre_commands None list of commands to be executed before getting dmenu answer
selected_backgroundNone defines the selected background color (#RGB or #RRGGBB)
selected_foregroundNone defines the selected foreground color (#RGB or #RRGGBB)

43

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.1.2 Dmenu

class libqtile.extension.Dmenu(**config)
Python wrapper for dmenu http://tools.suckless.org/dmenu/

key default description
background None defines the normal background color (#RGB or #RRGGBB)
command None the command to be launched (string or list with arguments)
dmenu_bottom False dmenu appears at the bottom of the screen
dmenu_command 'dmenu' the dmenu command to be launched
dmenu_font None override the default 'font' and 'fontsize' options for dmenu
dmenu_height None defines the height (only supported by some dmenu forks)
dmenu_ignorecase False dmenu matches menu items case insensitively
dmenu_lines None dmenu lists items vertically, with the given number of lines
dmenu_prompt None defines the prompt to be displayed to the left of the input field
font 'sans' defines the font name to be used
fontsize None defines the font size to be used
foreground None defines the normal foreground color (#RGB or #RRGGBB)
selected_backgroundNone defines the selected background color (#RGB or #RRGGBB)
selected_foregroundNone defines the selected foreground color (#RGB or #RRGGBB)

2.1.3 DmenuRun

class libqtile.extension.DmenuRun(**config)
Special case to run applications.

config.py should have something like:

from libqtile import extension
keys = [

Key(['mod4'], 'r', lazy.run_extension(extension.DmenuRun(
dmenu_prompt=">",
dmenu_font="Andika-8",
background="#15181a",
foreground="#00ff00",
selected_background="#079822",
selected_foreground="#fff",
dmenu_height=24, # Only supported by some dmenu forks

))),
]

44 Chapter 2. Reference

http://tools.suckless.org/dmenu/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None defines the normal background color (#RGB or #RRGGBB)
command None the command to be launched (string or list with arguments)
dmenu_bottom False dmenu appears at the bottom of the screen
dmenu_command 'dmenu_run' the dmenu command to be launched
dmenu_font None override the default 'font' and 'fontsize' options for dmenu
dmenu_height None defines the height (only supported by some dmenu forks)
dmenu_ignorecase False dmenu matches menu items case insensitively
dmenu_lines None dmenu lists items vertically, with the given number of lines
dmenu_prompt None defines the prompt to be displayed to the left of the input field
font 'sans' defines the font name to be used
fontsize None defines the font size to be used
foreground None defines the normal foreground color (#RGB or #RRGGBB)
selected_backgroundNone defines the selected background color (#RGB or #RRGGBB)
selected_foregroundNone defines the selected foreground color (#RGB or #RRGGBB)

2.1.4 J4DmenuDesktop

class libqtile.extension.J4DmenuDesktop(**config)
Python wrapper for j4-dmenu-desktop https://github.com/enkore/j4-dmenu-desktop

key default description
background None defines the normal background color (#RGB or #RRGGBB)
command None the command to be launched (string or list with arguments)
dmenu_bottom False dmenu appears at the bottom of the screen
dmenu_command 'dmenu' the dmenu command to be launched
dmenu_font None override the default 'font' and 'fontsize' options for dmenu
dmenu_height None defines the height (only supported by some dmenu forks)
dmenu_ignorecase False dmenu matches menu items case insensitively
dmenu_lines None dmenu lists items vertically, with the given number of lines
dmenu_prompt None defines the prompt to be displayed to the left of the input field
font 'sans' defines the font name to be used
fontsize None defines the font size to be used
foreground None defines the normal foreground color (#RGB or #RRGGBB)
j4dmenu_command 'j4-dmenu-desktop'the dmenu command to be launched
j4dmenu_display_binaryFalse display binary name after each entry
j4dmenu_generic True include the generic name of desktop entries
j4dmenu_terminal None terminal emulator used to start terminal apps
j4dmenu_usage_logNone file used to sort items by usage frequency
j4dmenu_use_xdg_deFalse read $XDG_CURRENT_DESKTOP to determine the desktop

environment
selected_backgroundNone defines the selected background color (#RGB or #RRGGBB)
selected_foregroundNone defines the selected foreground color (#RGB or #RRGGBB)

2.1. Built-in Extensions 45

https://github.com/enkore/j4-dmenu-desktop

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.1.5 RunCommand

class libqtile.extension.RunCommand(**config)
Run an arbitrary command.

Mostly useful as a superclass for more specific extensions that need to interact with the qtile object.

Also consider simply using lazy.spawn() or writing a client.

key default description
background None defines the normal background color (#RGB or #RRGGBB)
command None the command to be launched (string or list with arguments)
font 'sans' defines the font name to be used
fontsize None defines the font size to be used
foreground None defines the normal foreground color (#RGB or #RRGGBB)
selected_backgroundNone defines the selected background color (#RGB or #RRGGBB)
selected_foregroundNone defines the selected foreground color (#RGB or #RRGGBB)

2.1.6 WindowList

class libqtile.extension.WindowList(**config)
Give vertical list of all open windows in dmenu. Switch to selected.

key default description
all_groups True If True, list windows from all groups; otherwise only from the

current group
background None defines the normal background color (#RGB or #RRGGBB)
command None the command to be launched (string or list with arguments)
dmenu_bottom False dmenu appears at the bottom of the screen
dmenu_command 'dmenu' the dmenu command to be launched
dmenu_font None override the default 'font' and 'fontsize' options for dmenu
dmenu_height None defines the height (only supported by some dmenu forks)
dmenu_ignorecase False dmenu matches menu items case insensitively
dmenu_lines '80' Give lines vertically. Set to None get inline
dmenu_prompt None defines the prompt to be displayed to the left of the input field
font 'sans' defines the font name to be used
fontsize None defines the font size to be used
foreground None defines the normal foreground color (#RGB or #RRGGBB)
item_format '{group}.{id}:

{window}'
the format for the menu items

selected_backgroundNone defines the selected background color (#RGB or #RRGGBB)
selected_foregroundNone defines the selected foreground color (#RGB or #RRGGBB)

46 Chapter 2. Reference

http://docs.qtile.org/en/latest/manual/commands/scripting.html

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.2 Built-in Hooks

subscribe.addgroup(func)
Called when group is added

Arguments
• name of new group

subscribe.changegroup(func)
Called whenever a group change occurs

Arguments
None

subscribe.client_focus(func)
Called whenever focus moves to a client window

Arguments
• Window object of the new focus.

subscribe.client_killed(func)
Called after a client has been unmanaged

Arguments
• Window object of the killed window.

subscribe.client_managed(func)
Called after Qtile starts managing a new client

Called after a window is assigned to a group, or when a window is made static. This hook is not called for internal
windows.

Arguments
• Window object of the managed window

subscribe.client_mouse_enter(func)
Called when the mouse enters a client

Arguments
• Window of window entered

subscribe.client_name_updated(func)
Called when the client name changes

Arguments
• Window of client with updated name

subscribe.client_new(func)
Called before Qtile starts managing a new client

Use this hook to declare windows static, or add them to a group on startup. This hook is not called for internal
windows.

Arguments
• Window object

2.2. Built-in Hooks 47

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Examples

@libqtile.hook.subscribe.client_new
def func(c):

if c.name == "xterm":
c.togroup("a")

elif c.name == "dzen":
c.cmd_static(0)

subscribe.client_urgent_hint_changed(func)
Called when the client urgent hint changes

Arguments
• Window of client with hint change

subscribe.current_screen_change(func)
Called when the current screen (i.e. the screen with focus) changes

Arguments
None

subscribe.delgroup(func)
Called when group is deleted

Arguments
• name of deleted group

subscribe.enter_chord(func)
Called when key chord begins

Arguments
• name of chord(mode)

subscribe.float_change(func)
Called when a change in float state is made

Arguments
None

subscribe.focus_change(func)
Called when focus is changed, including moving focus between groups or when focus is lost completely

Arguments
None

subscribe.group_window_add(func)
Called when a new window is added to a group

Arguments
• Group receiving the new window

• Window added to the group

subscribe.layout_change(func)
Called on layout change

Arguments
• layout object for new layout

48 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

• group object on which layout is changed

subscribe.leave_chord(func)
Called when key chord ends

Arguments
None

subscribe.net_wm_icon_change(func)
Called on _NET_WM_ICON chance

Arguments
• Window of client with changed icon

subscribe.restart(func)
Called before qtile is restarted

Arguments
None

subscribe.screen_change(func)
Called when the output configuration is changed (e.g. via randr in X11).

Arguments
• xproto.randr.ScreenChangeNotify event (X11) or None (Wayland).

subscribe.screens_reconfigured(func)
Called once qtile.cmd_reconfigure_screens has completed (e.g. if reconfigure_screens is set to True
in your config).

Arguments
None

subscribe.selection_change(func)
Called on selection change

Arguments
• name of the selection

• dictionary describing selection, containing owner and selection as keys

subscribe.selection_notify(func)
Called on selection notify

Arguments
• name of the selection

• dictionary describing selection, containing owner and selection as keys

subscribe.setgroup(func)
Called when group is changed

Arguments
None

subscribe.shutdown(func)
Called before qtile is shutdown

Arguments

2.2. Built-in Hooks 49

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

None

subscribe.startup(func)
Called when qtile is started

Arguments
None

subscribe.startup_complete(func)
Called when qtile is started after all resources initialized

Arguments
None

subscribe.startup_once(func)
Called when Qtile has started on first start

This hook is called exactly once per session (i.e. not on each lazy.restart()).

Arguments
None

2.3 Built-in Layouts

2.3.1 Bsp

class libqtile.layout.Bsp(**config)
This layout is inspired by bspwm, but it does not try to copy its features.

The first client occupies the entire screen space. When a new client is created, the selected space is partitioned
in 2 and the new client occupies one of those subspaces, leaving the old client with the other.

The partition can be either horizontal or vertical according to the dimensions of the current space: if its
width/height ratio is above a pre-configured value, the subspaces are created side-by-side, otherwise, they are
created on top of each other. The partition direction can be freely toggled. All subspaces can be resized and
clients can be shuffled around.

All clients are organized at the leaves of a full binary tree.

An example key configuration is:

Key([mod], "j", lazy.layout.down()),
Key([mod], "k", lazy.layout.up()),
Key([mod], "h", lazy.layout.left()),
Key([mod], "l", lazy.layout.right()),
Key([mod, "shift"], "j", lazy.layout.shuffle_down()),
Key([mod, "shift"], "k", lazy.layout.shuffle_up()),
Key([mod, "shift"], "h", lazy.layout.shuffle_left()),
Key([mod, "shift"], "l", lazy.layout.shuffle_right()),
Key([mod, "mod1"], "j", lazy.layout.flip_down()),
Key([mod, "mod1"], "k", lazy.layout.flip_up()),
Key([mod, "mod1"], "h", lazy.layout.flip_left()),
Key([mod, "mod1"], "l", lazy.layout.flip_right()),
Key([mod, "control"], "j", lazy.layout.grow_down()),
Key([mod, "control"], "k", lazy.layout.grow_up()),

(continues on next page)

50 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

Key([mod, "control"], "h", lazy.layout.grow_left()),
Key([mod, "control"], "l", lazy.layout.grow_right()),
Key([mod, "shift"], "n", lazy.layout.normalize()),
Key([mod], "Return", lazy.layout.toggle_split()),

key default description
border_focus '#881111' Border colour(s) for the focused window.
border_normal '#220000' Border colour(s) for un-focused windows.
border_on_single False Draw border when there is only one window.
border_width 2 Border width.
fair True New clients are inserted in the shortest branch.
grow_amount 10 Amount by which to grow a window/column.
lower_right True New client occupies lower or right subspace.
margin 0 Margin of the layout (int or list of ints [N E S W]).
margin_on_single None Margin when there is only one window (int or list of ints [N E S

W], 'None' to use 'margin' value).
ratio 1.6 Width/height ratio that defines the partition direction.

2.3.2 Columns

class libqtile.layout.Columns(**config)
Extension of the Stack layout.

The screen is split into columns, which can be dynamically added or removed. Each column can present its
windows in 2 modes: split or stacked. In split mode, all windows are presented simultaneously, spliting the
column space. In stacked mode, only a single window is presented from the stack of windows. Columns and
windows can be resized and windows can be shuffled around.

This layout can also emulate wmii's default layout via:

layout.Columns(num_columns=1, insert_position=1)

Or the "Vertical", and "Max", depending on the default parameters.

An example key configuration is:

Key([mod], "j", lazy.layout.down()),
Key([mod], "k", lazy.layout.up()),
Key([mod], "h", lazy.layout.left()),
Key([mod], "l", lazy.layout.right()),
Key([mod, "shift"], "j", lazy.layout.shuffle_down()),
Key([mod, "shift"], "k", lazy.layout.shuffle_up()),
Key([mod, "shift"], "h", lazy.layout.shuffle_left()),
Key([mod, "shift"], "l", lazy.layout.shuffle_right()),
Key([mod, "control"], "j", lazy.layout.grow_down()),
Key([mod, "control"], "k", lazy.layout.grow_up()),
Key([mod, "control"], "h", lazy.layout.grow_left()),
Key([mod, "control"], "l", lazy.layout.grow_right()),
Key([mod, "shift", "control"], "h", lazy.layout.swap_column_left()),
Key([mod, "shift", "control"], "l", lazy.layout.swap_column_right()),
Key([mod], "Return", lazy.layout.toggle_split()),
Key([mod], "n", lazy.layout.normalize()),

2.3. Built-in Layouts 51

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
border_focus '#881111' Border colour(s) for the focused window.
border_focus_stack'#881111' Border colour(s) for the focused window in stacked columns.
border_normal '#220000' Border colour(s) for un-focused windows.
border_normal_stack'#220000' Border colour(s) for un-focused windows in stacked columns.
border_on_single False Draw a border when there is one only window.
border_width 2 Border width.
fair False Add new windows to the column with least windows.
grow_amount 10 Amount by which to grow a window/column.
insert_position 0 Position relative to the current window where new ones are in-

serted (0 means right above the current window, 1 means right
after).

margin 0 Margin of the layout (int or list of ints [N E S W]).
margin_on_single None Margin when only one window. (int or list of ints [N E S W])
num_columns 2 Preferred number of columns.
split True New columns presentation mode.
wrap_focus_columnsTrue Wrap the screen when moving focus across columns.
wrap_focus_rows True Wrap the screen when moving focus across rows.
wrap_focus_stacksTrue Wrap the screen when moving focus across stacked.

2.3.3 Floating

class libqtile.layout.Floating(float_rules: Optional[list[libqtile.config.Match]] = None,
no_reposition_rules=None, **config)

Floating layout, which does nothing with windows but handles focus order

key default description
border_focus '#0000ff' Border colour(s) for the focused window.
border_normal '#000000' Border colour(s) for un-focused windows.
border_width 1 Border width.
fullscreen_border_width0 Border width for fullscreen.
max_border_width 0 Border width for maximize.

2.3.4 Matrix

class libqtile.layout.Matrix(_columns: Optional[int] = None, **config)
This layout divides the screen into a matrix of equally sized cells and places one window in each cell. The number
of columns is configurable and can also be changed interactively.

key default description
border_focus '#0000ff' Border colour(s) for the focused window.
border_normal '#000000' Border colour(s) for un-focused windows.
border_width 1 Border width.
columns 2 Number of columns
margin 0 Margin of the layout (int or list of ints [N E S W])

52 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.3.5 Max

class libqtile.layout.Max(**config)
Maximized layout

A simple layout that only displays one window at a time, filling the screen_rect. This is suitable for use on laptops
and other devices with small screens. Conceptually, the windows are managed as a stack, with commands to
switch to next and previous windows in the stack.

2.3.6 MonadTall

class libqtile.layout.MonadTall(**config)
Emulate the behavior of XMonad's default tiling scheme.

Main-Pane:

A main pane that contains a single window takes up a vertical portion of the screen_rect based on the ratio setting.
This ratio can be adjusted with the cmd_grow_main and cmd_shrink_main or, while the main pane is in focus,
cmd_grow and cmd_shrink. You may also set the ratio directly with cmd_set_ratio.

Using the cmd_flip method will switch which horizontal side the main pane will occupy. The main pane is
considered the "top" of the stack.

Secondary-panes:

Occupying the rest of the screen_rect are one or more secondary panes. The secondary panes will share the ver-
tical space of the screen_rect however they can be resized at will with the cmd_grow and cmd_shrink methods.
The other secondary panes will adjust their sizes to smoothly fill all of the space.

--------------------- ---------------------

--------------------- ---------------------

2.3. Built-in Layouts 53

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Panes can be moved with the cmd_shuffle_up and cmd_shuffle_downmethods. As mentioned the main pane
is considered the top of the stack; moving up is counter-clockwise and moving down is clockwise.

The opposite is true if the layout is "flipped".

--------------------- ---------------------
	2		2	
	______		_______	
	3		3	
1	______		_______	1
	4		4	
--------------------- ---------------------

Normalizing/Resetting:

To restore all secondary client windows to their default size ratios use the cmd_normalize method.

To reset all client windows to their default sizes, including the primary window, use the cmd_reset method.

Maximizing:

To toggle a client window between its minimum and maximum sizes simply use the cmd_maximize on a focused
client.

Suggested Bindings:

Key([modkey], "h", lazy.layout.left()),
Key([modkey], "l", lazy.layout.right()),
Key([modkey], "j", lazy.layout.down()),
Key([modkey], "k", lazy.layout.up()),
Key([modkey, "shift"], "h", lazy.layout.swap_left()),
Key([modkey, "shift"], "l", lazy.layout.swap_right()),
Key([modkey, "shift"], "j", lazy.layout.shuffle_down()),
Key([modkey, "shift"], "k", lazy.layout.shuffle_up()),
Key([modkey], "i", lazy.layout.grow()),
Key([modkey], "m", lazy.layout.shrink()),
Key([modkey], "n", lazy.layout.normalize()),
Key([modkey], "o", lazy.layout.maximize()),
Key([modkey, "shift"], "space", lazy.layout.flip()),

54 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
align 0 Which side master plane will be placed (one of MonadTall.

_left or MonadTall._right)
border_focus '#ff0000' Border colour(s) for the focused window.
border_normal '#000000' Border colour(s) for un-focused windows.
border_width 2 Border width.
change_ratio 0.05 Resize ratio
change_size 20 Resize change in pixels
margin 0 Margin of the layout
max_ratio 0.75 The percent of the screen-space the master pane should occupy

at maximum.
min_ratio 0.25 The percent of the screen-space the master pane should occupy

at minimum.
min_secondary_size85 minimum size in pixel for a secondary pane window
new_client_position'after_current' Place new windows: after_current - after the active window. be-

fore_current - before the active window, top - at the top of the
stack, bottom - at the bottom of the stack,

ratio 0.5 The percent of the screen-space the master pane should occupy
by default.

single_border_widthNone Border width for single window
single_margin None Margin size for single window

2.3.7 MonadThreeCol

class libqtile.layout.MonadThreeCol(**config)
Emulate the behavior of XMonad's ThreeColumns layout.

A layout similar to tall but with three columns. With an ultra wide display this layout can be used for a huge
main window - ideally at the center of the screen - and up to six reasonable sized secondary windows.

Main-Pane:

A main pane that contains a single window takes up a vertical portion of the screen_rect based on the ratio setting.
This ratio can be adjusted with the cmd_grow_main and cmd_shrink_main or, while the main pane is in focus,
cmd_grow and cmd_shrink. The main pane can also be centered.

--------------------------- ---------------------------
--------------------------- ---------------------------

Secondary-panes:

Occupying the rest of the screen_rect are one or more secondary panes. The secondary panes will be divided
into two columns and share the vertical space of each column. However they can be resized at will with the
cmd_grow and cmd_shrink methods. The other secondary panes will adjust their sizes to smoothly fill all of
the space.

2.3. Built-in Layouts 55

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

--------------------------- ---------------------------

		______				______

--------------------------- ---------------------------

Panes can be moved with the cmd_shuffle_up and cmd_shuffle_downmethods. As mentioned the main pane
is considered the top of the stack; moving up is counter-clockwise and moving down is clockwise. A secondary
pane can also be promoted to the main pane with the cmd_swap_main method.

Normalizing/Resetting:

To restore all secondary client windows to their default size ratios use the cmd_normalize method.

To reset all client windows to their default sizes, including the primary window, use the cmd_reset method.

Maximizing:

To maximized a client window simply use the cmd_maximize on a focused client.

key default description
align 0 Which side master plane will be placed (one of MonadTall.

_left or MonadTall._right)
border_focus '#ff0000' Border colour(s) for the focused window.
border_normal '#000000' Border colour(s) for un-focused windows.
border_width 2 Border width.
change_ratio 0.05 Resize ratio
change_size 20 Resize change in pixels
main_centered True Place the main pane at the center of the screen
margin 0 Margin of the layout
max_ratio 0.75 The percent of the screen-space the master pane should occupy

at maximum.
min_ratio 0.25 The percent of the screen-space the master pane should occupy

at minimum.
min_secondary_size85 minimum size in pixel for a secondary pane window
new_client_position'top' Place new windows: after_current - after the active window. be-

fore_current - before the active window, top - at the top of the
stack, bottom - at the bottom of the stack,

ratio 0.5 The percent of the screen-space the master pane should occupy
by default.

single_border_widthNone Border width for single window
single_margin None Margin size for single window

56 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.3.8 MonadWide

class libqtile.layout.MonadWide(**config)
Emulate the behavior of XMonad's horizontal tiling scheme.

This layout attempts to emulate the behavior of XMonad wide tiling scheme.

Main-Pane:

A main pane that contains a single window takes up a horizontal portion of the screen_rect based on the ratio
setting. This ratio can be adjusted with the cmd_grow_main and cmd_shrink_main or, while the main pane is
in focus, cmd_grow and cmd_shrink.

| |
| |
| |
|___________________|
| |

Using the cmd_flip method will switch which vertical side the main pane will occupy. The main pane is
considered the "top" of the stack.

| |
|___________________|
| |
| |
| |

Secondary-panes:

Occupying the rest of the screen_rect are one or more secondary panes. The secondary panes will share the
horizontal space of the screen_rect however they can be resized at will with the cmd_grow and cmd_shrink
methods. The other secondary panes will adjust their sizes to smoothly fill all of the space.

--------------------- ---------------------
___________________		___________________				
--------------------- ---------------------

Panes can be moved with the cmd_shuffle_up and cmd_shuffle_downmethods. As mentioned the main pane
is considered the top of the stack; moving up is counter-clockwise and moving down is clockwise.

The opposite is true if the layout is "flipped".

--------------------- ---------------------
| | | 2 | 3 | 4 |

(continues on next page)

2.3. Built-in Layouts 57

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

1		_____	_______	_____

				1
2	3	4		
--------------------- ---------------------

Normalizing/Resetting:

To restore all secondary client windows to their default size ratios use the cmd_normalize method.

To reset all client windows to their default sizes, including the primary window, use the cmd_reset method.

Maximizing:

To toggle a client window between its minimum and maximum sizes simply use the cmd_maximize on a focused
client.

Suggested Bindings:

Key([modkey], "h", lazy.layout.left()),
Key([modkey], "l", lazy.layout.right()),
Key([modkey], "j", lazy.layout.down()),
Key([modkey], "k", lazy.layout.up()),
Key([modkey, "shift"], "h", lazy.layout.swap_left()),
Key([modkey, "shift"], "l", lazy.layout.swap_right()),
Key([modkey, "shift"], "j", lazy.layout.shuffle_down()),
Key([modkey, "shift"], "k", lazy.layout.shuffle_up()),
Key([modkey], "i", lazy.layout.grow()),
Key([modkey], "m", lazy.layout.shrink()),
Key([modkey], "n", lazy.layout.normalize()),
Key([modkey], "o", lazy.layout.maximize()),
Key([modkey, "shift"], "space", lazy.layout.flip()),

58 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
align 0 Which side master plane will be placed (one of MonadTall.

_left or MonadTall._right)
border_focus '#ff0000' Border colour(s) for the focused window.
border_normal '#000000' Border colour(s) for un-focused windows.
border_width 2 Border width.
change_ratio 0.05 Resize ratio
change_size 20 Resize change in pixels
margin 0 Margin of the layout
max_ratio 0.75 The percent of the screen-space the master pane should occupy

at maximum.
min_ratio 0.25 The percent of the screen-space the master pane should occupy

at minimum.
min_secondary_size85 minimum size in pixel for a secondary pane window
new_client_position'after_current' Place new windows: after_current - after the active window. be-

fore_current - before the active window, top - at the top of the
stack, bottom - at the bottom of the stack,

ratio 0.5 The percent of the screen-space the master pane should occupy
by default.

single_border_widthNone Border width for single window
single_margin None Margin size for single window

2.3.9 RatioTile

class libqtile.layout.RatioTile(**config)
Tries to tile all windows in the width/height ratio passed in

key default description
border_focus '#0000ff' Border colour(s) for the focused window.
border_normal '#000000' Border colour(s) for un-focused windows.
border_width 1 Border width.
fancy False Use a different method to calculate window sizes.
margin 0 Margin of the layout (int or list of ints [N E S W])
ratio 1.618 Ratio of the tiles
ratio_increment 0.1 Amount to increment per ratio increment

2.3.10 Slice

class libqtile.layout.Slice(**config)
Slice layout

This layout cuts piece of screen_rect and places a single window on that piece, and delegates other window
placement to other layout

2.3. Built-in Layouts 59

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
fallback <libqtile.

layout.max.
Max object at
0x7f9439543be0>

Layout to be used for the non-slice area.

match None Match-object describing which window(s) to move to the slice.
side 'left' Position of the slice (left, right, top, bottom).
width 256 Slice width.

2.3.11 Spiral

class libqtile.layout.Spiral(**config)
A mathematical layout.

Renders windows in a spiral form by splitting the screen based on a selected ratio. The direction of the split is
changed every time in a defined order resulting in a spiral formation.

The main window can be sized with lazy.layout.grow_main() and lazy.layout.shrink_main(). All
other windows are sized by lazy.layout.increase_ratio() and lazy.layout.decrease_ratio().

NB if main_pane_ratio is not set then it will also be adjusted according to ratio. However, as soon
shrink_main() or grow_main() have been called once then the master pane will only change size follow-
ing further calls to those methods.

Users are able to choose the location of the main (i.e. largest) pane and the direction of the rotation.

Some examples:

main_pane="left", clockwise=True

1	2		

	5	6	3

	4		

main_pane="top", clockwise=False

|1 |
| |
2

60 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
border_focus '#0000ff' Border colour(s) for the focused window.
border_normal '#000000' Border colour(s) for un-focused windows.
border_width 1 Border width.
clockwise True Direction of spiral
main_pane 'left' Location of biggest window 'top', 'bottom', 'left', 'right'
main_pane_ratio None Ratio for biggest window or 'None' to use same ratio for all win-

dows.
margin 0 Margin of the layout (int or list of ints [N E S W])
new_client_position'top' Place new windows: 'after_current' - after the active window,

'before_current' - before the active window, 'top' - in the main
pane, 'bottom '- at the bottom of the stack. NB windows that are
added too low in the stack may be hidden if there is no remaining
space in the spiral.

ratio 0.
6180469715698392

Ratio of the tiles

ratio_increment 0.1 Amount to increment per ratio increment

2.3.12 Stack

class libqtile.layout.Stack(**config)
A layout composed of stacks of windows

The stack layout divides the screen_rect horizontally into a set of stacks. Commands allow you to switch between
stacks, to next and previous windows within a stack, and to split a stack to show all windows in the stack, or unsplit
it to show only the current window.

Unlike the columns layout the number of stacks is fixed.

key default description
autosplit False Auto split all new stacks.
border_focus '#0000ff' Border colour(s) for the focused window.
border_normal '#000000' Border colour(s) for un-focused windows.
border_width 1 Border width.
fair False Add new windows to the stacks in a round robin way.
margin 0 Margin of the layout (int or list of ints [N E S W])
num_stacks 2 Number of stacks.

2.3.13 Tile

class libqtile.layout.Tile(**config)
A layout with two stacks of windows dividing the screen

The Tile layout divides the screen_rect horizontally into two stacks. The maximum amount of "master" windows
can be configured; surplus windows will be displayed in the slave stack on the right. Within their stacks, the
windows will be tiled vertically. The windows can be rotated in their entirety by calling up() or down() or, if
shift_windows is set to True, individually.

2.3. Built-in Layouts 61

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
add_after_last False Add new clients after all the others. If this is True, it overrides

add_on_top.
add_on_top True Add new clients before all the others, potentially pushing other

windows into slave stack.
border_focus '#0000ff' Border colour(s) for the focused window.
border_normal '#000000' Border colour(s) for un-focused windows.
border_on_single True Whether to draw border if there is only one window.
border_width 1 Border width.
expand True Expand the master windows to the full screen width if no slaves

are present.
margin 0 Margin of the layout (int or list of ints [N E S W])
margin_on_single True Whether to draw margin if there is only one window.
master_length 1 Amount of windows displayed in the master stack. Surplus win-

dows will be moved to the slave stack.
master_match None A Match object defining which window(s) should be kept mas-

ters (single or a list of Match-objects).
max_ratio 0.85 Maximum width of master windows
min_ratio 0.15 Minimum width of master windows
ratio 0.618 Width-percentage of screen size reserved for master windows.
ratio_increment 0.05 By which amount to change ratio when cmd_decrease_ratio or

cmd_increase_ratio are called.
shift_windows False Allow to shift windows within the layout. If False, the layout

will be rotated instead.

2.3.14 TreeTab

class libqtile.layout.TreeTab(**config)
Tree Tab Layout

This layout works just like Max but displays tree of the windows at the left border of the screen_rect, which
allows you to overview all opened windows. It's designed to work with uzbl-browser but works with other
windows too.

The panel at the left border contains sections, each of which contains windows. Initially the panel looks like flat
lists inside its section, and looks like trees if some of the windows are "moved" left or right.

For example, it looks like below with two sections initially:

+------------+
|Section Foo |
+------------+
| Window A |
+------------+
| Window B |
+------------+
| Window C |
+------------+
|Section Bar |
+------------+

And then it will look like below if "Window B" is moved right and "Window C" is moved right too:

62 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

+------------+
|Section Foo |
+------------+
| Window A |
+------------+
| Window B |
+------------+
| Window C |
+------------+
|Section Bar |
+------------+

key default description
active_bg '000080' Background color of active tab
active_fg 'ffffff' Foreground color of active tab
bg_color '000000' Background color of tabs
border_width 2 Width of the border
font 'sans' Font
fontshadow None font shadow color, default is None (no shadow)
fontsize 14 Font pixel size.
inactive_bg '606060' Background color of inactive tab
inactive_fg 'ffffff' Foreground color of inactive tab
level_shift 8 Shift for children tabs
margin_left 6 Left margin of tab panel
margin_y 6 Vertical margin of tab panel
padding_left 6 Left padding for tabs
padding_x 6 Left padding for tab label
padding_y 2 Top padding for tab label
panel_width 150 Width of the left panel
place_right False Place the tab panel on the right side
previous_on_rm False Focus previous window on close instead of first.
section_bottom 6 Bottom margin of section
section_fg 'ffffff' Color of section label
section_fontsize 11 Font pixel size of section label
section_left 4 Left margin of section label
section_padding 4 Bottom of margin section label
section_top 4 Top margin of section label
sections ['Default'] Foreground color of inactive tab
urgent_bg 'ff0000' Background color of urgent tab
urgent_fg 'ffffff' Foreground color of urgent tab
vspace 2 Space between tabs

2.3. Built-in Layouts 63

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.3.15 VerticalTile

class libqtile.layout.VerticalTile(**config)
Tiling layout that works nice on vertically mounted monitors

The available height gets divided by the number of panes, if no pane is maximized. If one pane has been maxi-
mized, the available height gets split in master- and secondary area. The maximized pane (master pane) gets the
full height of the master area and the other panes (secondary panes) share the remaining space. The master area
(at default 75%) can grow and shrink via keybindings.

----------------- ----------------- ---
1	<-- Panes			

2	<-----+	1		Master Area

3	<-----+			
---------------			---------------	---
			2	
4	<-----+	---------------		Secondary Area
		3		
----------------- ----------------- ---

Normal behavior. No One maximized pane in the master area maximized pane. No and two secondary panes in
the specific areas. secondary area.

----------------------------------- In some cases VerticalTile can be
| | useful on horizontal mounted
| 1 | monitors two.
| | For example if you want to have a
|---------------------------------| webbrowser and a shell below it.
| |
| 2 |

Suggested keybindings:

Key([modkey], 'j', lazy.layout.down()),
Key([modkey], 'k', lazy.layout.up()),
Key([modkey], 'Tab', lazy.layout.next()),
Key([modkey, 'shift'], 'Tab', lazy.layout.next()),
Key([modkey, 'shift'], 'j', lazy.layout.shuffle_down()),
Key([modkey, 'shift'], 'k', lazy.layout.shuffle_up()),
Key([modkey], 'm', lazy.layout.maximize()),
Key([modkey], 'n', lazy.layout.normalize()),

64 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
border_focus '#FF0000' Border color(s) for the focused window.
border_normal '#FFFFFF' Border color(s) for un-focused windows.
border_width 1 Border width.
margin 0 Border margin (int or list of ints [N E S W]).

2.3.16 Zoomy

class libqtile.layout.Zoomy(**config)
A layout with single active windows, and few other previews at the right

key default description
columnwidth 150 Width of the right column
margin 0 Margin of the layout (int or list of ints [N E S W])
property_big '1.0' Property value to set on normal window (X11 only)
property_name 'ZOOM' Property to set on zoomed window (X11 only)
property_small '0.1' Property value to set on zoomed window (X11 only)

2.4 Built-in Widgets

2.4.1 AGroupBox

class libqtile.widget.AGroupBox(**config)
A widget that graphically displays the current group

Supported bar orientations: horizontal only

key default description
background None Widget background color
border '000000' group box border color
borderwidth 3 Current group border width
center_aligned True center-aligned group box
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
margin 3 Margin inside the box
margin_x None X Margin. Overrides 'margin' if set
margin_y None Y Margin. Overrides 'margin' if set
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
padding_x None X Padding. Overrides 'padding' if set
padding_y None Y Padding. Overrides 'padding' if set

2.4. Built-in Widgets 65

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.2 Backlight

class libqtile.widget.Backlight(**config)
A simple widget to show the current brightness of a monitor.

If the change_command parameter is set to None, the widget will attempt to use the interface at /sys/class to
change brightness. Depending on the setup, the user may need to be added to the video group to have permission
to write to this interface. This depends on having the correct udev rules the brightness file; these are typically
installed alongside brightness tools such as brightnessctl (which changes the group to 'video') so installing that
is an easy way to get it working.

You can also bind keyboard shortcuts to the backlight widget with:

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
backlight_name 'acpi_video0' ACPI name of a backlight device
brightness_file 'brightness' Name of file with the current brightness in

/sys/class/backlight/backlight_name
change_command 'xbacklight

-set {0}'
Execute command to change value

fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{percent:2.

0%}'
Display format

markup True Whether or not to use pango markup
max_brightness_file'max_brightness' Name of file with the maximum brightness in

/sys/class/backlight/backlight_name
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
step 10 Percent of backlight every scroll changed
update_interval 0.2 The delay in seconds between updates

66 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.3 Battery

class libqtile.widget.Battery(**config)
A text-based battery monitoring widget currently supporting FreeBSD

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
battery 0 Which battery should be monitored (battery number or name)
charge_char '^' Character to indicate the battery is charging
discharge_char 'V' Character to indicate the battery is discharging
empty_char 'x' Character to indicate the battery is empty
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{char}

{percent:2.0%}
{hour:d}:{min:02d}
{watt:.2f} W'

Display format

full_char '=' Character to indicate the battery is full
hide_threshold None Hide the text when there is enough energy 0 <= x < 1
low_background None Background color on low battery
low_foreground 'FF0000' Font color on low battery
low_percentage 0.1 Indicates when to use the low_foreground color 0 < x < 1
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
notification_timeout10 Time in seconds to display notification. 0 for no expiry.
notify_below None Send a notification below this battery level.
padding None Padding. Calculated if None.
show_short_text True Show "Full" or "Empty" rather than formated text
unknown_char '?' Character to indicate the battery status is unknown
update_interval 60 Seconds between status updates

2.4.4 BatteryIcon

class libqtile.widget.BatteryIcon(**config)
Battery life indicator widget.

Supported bar orientations: horizontal only

2.4. Built-in Widgets 67

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
battery 0 Which battery should be monitored
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
scale 1 Scale factor relative to the bar height. Defaults to 1
theme_path '/home/docs/

checkouts/
readthedocs.
org/
user_builds/
qtile/
checkouts/v0.
21.0/libqtile/
resources/
battery-icons'

Path of the icons

update_interval 60 Seconds between status updates

2.4.5 Bluetooth

class libqtile.widget.Bluetooth(**config)
Displays bluetooth status or connected device.

Uses dbus to communicate with the system bus.

Widget requirements: dbus-next.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
hci '/

dev_XX_XX_XX_XX_XX_XX'
hci0 device path, can be found with d-feet or similar dbus ex-
plorer.

markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.

68 Chapter 2. Reference

https://pypi.org/project/dbus-next/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.6 CPU

class libqtile.widget.CPU(**config)
A simple widget to display CPU load and frequency.

Widget requirements: psutil.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format 'CPU

{freq_current}GHz
{load_percent}%'

CPU display format

markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
update_interval 1.0 Update interval for the CPU widget

2.4.7 CPUGraph

class libqtile.widget.CPUGraph(**config)
Display CPU usage graph.

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None Widget background color
border_color '215578' Widget border color
border_width 2 Widget border width
core 'all' Which core to show (all/0/1/2/...)
fill_color '1667EB.3' Fill color for linefill graph
frequency 1 Update frequency in seconds
graph_color '18BAEB' Graph color
line_width 3 Line width
margin_x 3 Margin X
margin_y 3 Margin Y
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
samples 100 Count of graph samples.
start_pos 'bottom' Drawer starting position ('bottom'/'top')
type 'linefill' 'box', 'line', 'linefill'

2.4. Built-in Widgets 69

https://pypi.org/project/psutil/
https://pypi.org/project/psutil/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.8 Canto

class libqtile.widget.Canto(**config)
Display RSS feeds updates using the canto console reader

Supported bar orientations: horizontal and vertical

key default description
all_format '{number}' All feeds display format
background None Widget background color
feeds [] List of feeds to display, empty for all
fetch False Whether to fetch new items on update
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
one_format '{name}:

{number}'
One feed display format

padding None Padding. Calculated if None.
update_interval 600 Update interval in seconds, if none, the widget updates whenever

it's done.

2.4.9 CapsNumLockIndicator

class libqtile.widget.CapsNumLockIndicator(**config)
Really simple widget to show the current Caps/Num Lock state.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
update_interval 0.5 Update Time in seconds.

70 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.10 CheckUpdates

class libqtile.widget.CheckUpdates(**config)
Shows number of pending updates in different unix systems.

Note: It is common for package managers to return a non-zero code when there are no updates. As a result, the
widget will treat any error as if there are no updates. If you are using a custom commmand/script, you should
therefore ensure that it returns zero when it completes if you wish to see the output of your command.

In addition, as no errors are recorded to the log, if the widget is showing no updates and you believe that to be
incorrect, you should run the appropriate command in a terminal to view any error messages.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
colour_have_updates'ffffff' Colour when there are updates.
colour_no_updates'ffffff' Colour when there's no updates.
custom_command None Custom shell command for checking updates (counts the lines of

the output)
custom_command_modify<function

CheckUpdates.
<lambda> at
0x7f9438fa8d30>

Lambda function to modify line count from custom_command

display_format 'Updates:
{updates}'

Display format if updates available

distro 'Arch' Name of your distribution
execute None Command to execute on click
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
no_update_string '' String to display if no updates available
padding None Padding. Calculated if None.
restart_indicator'' Indicator to represent reboot is required. (Ubuntu only)
update_interval 60 Update interval in seconds.

2.4. Built-in Widgets 71

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.11 Chord

class libqtile.widget.Chord(width=CALCULATED, **config)
Display current key chord

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
chords_colors {} colors per chord in form of tuple ('bg', 'fg').
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
name_transform <function

Chord.
<lambda> at
0x7f9438fa9090>

preprocessor for chord name it is pure function string -> string

padding None Padding. Calculated if None.

2.4.12 Clipboard

class libqtile.widget.Clipboard(width=CALCULATED, **config)
Display current clipboard contents

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
blacklist ['keepassx'] list with blacklisted wm_class, sadly not every clipboard window

sets them, keepassx does.Clipboard contents from blacklisted
wm_classes will be replaced by the value of blacklist_text.

blacklist_text '***********' text to display when the wm_class is blacklisted
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
max_width 10 maximum number of characters to display (None for all, useful

when width is bar.STRETCH)
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
selection 'CLIPBOARD' the selection to display(CLIPBOARD or PRIMARY)
timeout 10 Default timeout (seconds) for display text, None to keep forever

72 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.13 Clock

class libqtile.widget.Clock(**config)
A simple but flexible text-based clock

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '%H:%M' A Python datetime format string
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
timezone None The timezone to use for this clock, either as string if pytz

or dateutil is installed (e.g. "US/Central" or anything in
/usr/share/zoneinfo), or as tzinfo (e.g. datetime.timezone.utc).
None means the system local timezone and is the default.

update_interval 1.0 Update interval for the clock

2.4.14 Cmus

class libqtile.widget.Cmus(**config)
A simple Cmus widget.

Show the artist and album of now listening song and allow basic mouse control from the bar:

• toggle pause (or play if stopped) on left click;

• skip forward in playlist on scroll up;

• skip backward in playlist on scroll down.

Cmus (https://cmus.github.io) should be installed.

Supported bar orientations: horizontal and vertical

2.4. Built-in Widgets 73

https://cmus.github.io

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
noplay_color 'cecece' Text colour when not playing.
padding None Padding. Calculated if None.
play_color '00ff00' Text colour when playing.
update_interval 0.5 Update Time in seconds.

2.4.15 Countdown

class libqtile.widget.Countdown(**config)
A simple countdown timer text widget

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
date datetime.

datetime(2022,
3, 23, 9, 53,
50, 947505)

The datetime for the end of the countdown

fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{D}d {H}h

{M}m {S}s'
Format of the displayed text. Available variables:{D} == days,
{H} == hours, {M} == minutes, {S} seconds.

markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
update_interval 1.0 Update interval in seconds for the clock

74 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.16 CryptoTicker

class libqtile.widget.CryptoTicker(**config)
A cryptocurrency ticker widget, data provided by the coinbase.com API. Defaults to displaying currency in
whatever the current locale is. Examples:

display the average price of bitcoin in local currency widget.CryptoTicker()

display it in Euros: widget.CryptoTicker(currency="EUR")

or a different cryptocurrency! widget.CryptoTicker(crypto="ETH")

change the currency symbol: widget.CryptoTicker(currency="EUR", symbol="€")

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
crypto 'BTC' The cryptocurrency to display.
currency '' The baseline currency that the value of the crypto is displayed

in.
data None Post Data
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{crypto}:

{symbol}{amount:.
2f}'

Display string formatting.

headers {} Extra Headers
json True Is Json?
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
parse None Parse Function
symbol '' The symbol for the baseline currency.
update_interval 600 Update interval in seconds, if none, the widget updates whenever

it's done.
url None Url
user_agent 'Qtile' Set the user agent
xml False Is XML?

2.4. Built-in Widgets 75

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.17 CurrentLayout

class libqtile.widget.CurrentLayout(width=CALCULATED, **config)
Display the name of the current layout of the current group of the screen, the bar containing the widget, is on.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.

2.4.18 CurrentLayoutIcon

class libqtile.widget.CurrentLayoutIcon(**config)
Display the icon representing the current layout of the current group of the screen on which the bar containing
the widget is.

If you are using custom layouts, a default icon with question mark will be displayed for them. If you want to use
custom icon for your own layout, for example, FooGrid, then create a file named "layout-foogrid.png" and place
it in ~/.icons directory. You can as well use other directories, but then you need to specify those directories in
custom_icon_paths argument for this plugin.

The order of icon search is:

• dirs in custom_icon_paths config argument

• ~/.icons

• built-in qtile icons

Supported bar orientations: horizontal only

76 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
custom_icon_paths[] List of folders where to search icons beforeusing built-in icons

or icons in ~/.icons dir. This can also be used to providemissing
icons for custom layouts. Defaults to empty list.

fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
scale 1 Scale factor relative to the bar height. Defaults to 1

2.4.19 CurrentScreen

class libqtile.widget.CurrentScreen(width=CALCULATED, **config)
Indicates whether the screen this widget is on is currently active or not

Supported bar orientations: horizontal and vertical

key default description
active_color '00ff00' Color when screen is active
active_text 'A' Text displayed when the screen is active
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
inactive_color 'ff0000' Color when screen is inactive
inactive_text 'I' Text displayed when the screen is inactive
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.

2.4. Built-in Widgets 77

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.20 DF

class libqtile.widget.DF(**config)
Disk Free Widget

By default the widget only displays if the space is less than warn_space.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{p}

({uf}{m}|{r:.
0f}%)'

String format (p: partition, s: size, f: free space, uf: user free
space, m: measure, r: ratio (uf/s))

markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
measure 'G' Measurement (G, M, B)
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
partition '/' the partition to check space
update_interval 60 The update interval.
visible_on_warn True Only display if warning
warn_color 'ff0000' Warning color
warn_space 2 Warning space in scale defined by the measure option.

2.4.21 GenPollText

class libqtile.widget.GenPollText(**config)
A generic text widget that polls using poll function to get the text

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
func None Poll Function
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
update_interval 600 Update interval in seconds, if none, the widget updates whenever

it's done.

78 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.22 GenPollUrl

class libqtile.widget.GenPollUrl(**config)
A generic text widget that polls an url and parses it using parse function

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
data None Post Data
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
headers {} Extra Headers
json True Is Json?
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
parse None Parse Function
update_interval 600 Update interval in seconds, if none, the widget updates whenever

it's done.
url None Url
user_agent 'Qtile' Set the user agent
xml False Is XML?

2.4.23 GmailChecker

class libqtile.widget.GmailChecker(**config)
A simple gmail checker. If 'status_only_unseen' is True - set 'fmt' for one argument, ex. 'unseen: {0}'

Supported bar orientations: horizontal and vertical

2.4. Built-in Widgets 79

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
display_fmt 'inbox[{0}],

unseen[{1}]'
Display format

email_path 'INBOX' email_path
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
password None password
status_only_unseenFalse Only show unseen messages
update_interval 30 Update time in seconds.
username None username

2.4.24 GroupBox

class libqtile.widget.GroupBox(**config)
A widget that graphically displays the current group. All groups are displayed by their label. If the label of a
group is the empty string that group will not be displayed.

Supported bar orientations: horizontal only

key default description
active 'FFFFFF' Active group font colour
background None Widget background color
block_highlight_text_colorNone Selected group font colour
borderwidth 3 Current group border width
center_aligned True center-aligned group box
disable_drag False Disable dragging and dropping of group names on widget
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
hide_unused False Hide groups that have no windows and that are not displayed on

any screen.
highlight_color ['000000',

'282828']
Active group highlight color when using 'line' highlight method.

highlight_method 'border' Method of highlighting ('border', 'block', 'text', or 'line')Uses
*_border color settings

inactive '404040' Inactive group font colour
invert_mouse_wheelFalse Whether to invert mouse wheel group movement
margin 3 Margin inside the box
margin_x None X Margin. Overrides 'margin' if set

continues on next page

80 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Table 1 – continued from previous page
key default description
margin_y None Y Margin. Overrides 'margin' if set
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
other_current_screen_border'404040' Border or line colour for group on other screen when focused.
other_screen_border'404040' Border or line colour for group on other screen when unfocused.
padding None Padding. Calculated if None.
padding_x None X Padding. Overrides 'padding' if set
padding_y None Y Padding. Overrides 'padding' if set
rounded True To round or not to round box borders
spacing None Spacing between groups(if set to None, will be equal to mar-

gin_x)
this_current_screen_border'215578' Border or line colour for group on this screen when focused.
this_screen_border'215578' Border or line colour for group on this screen when unfocused.
urgent_alert_method'border' Method for alerting you of WM urgent hints (one of 'border',

'text', 'block', or 'line')
urgent_border 'FF0000' Urgent border or line color
urgent_text 'FF0000' Urgent group font color
use_mouse_wheel True Whether to use mouse wheel events
visible_groups None Groups that will be visible. If set to None or [], all groups will

be visible.Visible groups are identified by name not by their dis-
played label.

2.4.25 HDDBusyGraph

class libqtile.widget.HDDBusyGraph(**config)
Display HDD busy time graph

Parses /sys/block/<dev>/stat file and extracts overall device IO usage, based on io_ticks's value. See https:
//www.kernel.org/doc/Documentation/block/stat.txt

Supported bar orientations: horizontal only

key default description
background None Widget background color
border_color '215578' Widget border color
border_width 2 Widget border width
device 'sda' Block device to display info for
fill_color '1667EB.3' Fill color for linefill graph
frequency 1 Update frequency in seconds
graph_color '18BAEB' Graph color
line_width 3 Line width
margin_x 3 Margin X
margin_y 3 Margin Y
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
samples 100 Count of graph samples.
start_pos 'bottom' Drawer starting position ('bottom'/'top')
type 'linefill' 'box', 'line', 'linefill'

2.4. Built-in Widgets 81

https://www.kernel.org/doc/Documentation/block/stat.txt
https://www.kernel.org/doc/Documentation/block/stat.txt

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.26 HDDGraph

class libqtile.widget.HDDGraph(**config)
Display HDD free or used space graph

Supported bar orientations: horizontal only

key default description
background None Widget background color
border_color '215578' Widget border color
border_width 2 Widget border width
fill_color '1667EB.3' Fill color for linefill graph
frequency 1 Update frequency in seconds
graph_color '18BAEB' Graph color
line_width 3 Line width
margin_x 3 Margin X
margin_y 3 Margin Y
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
path '/' Partition mount point.
samples 100 Count of graph samples.
space_type 'used' free/used
start_pos 'bottom' Drawer starting position ('bottom'/'top')
type 'linefill' 'box', 'line', 'linefill'

2.4.27 IdleRPG

class libqtile.widget.IdleRPG(**config)
A widget for monitoring and displaying IdleRPG stats.

display idlerpg stats for the player 'pants' on freenode's #idlerpg
widget.IdleRPG(url="http://xethron.lolhosting.net/xml.php?player=pants")

Widget requirements: xmltodict.

Supported bar orientations: horizontal and vertical

82 Chapter 2. Reference

https://pypi.org/project/xmltodict/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
data None Post Data
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format 'IdleRPG:

{online} TTL:
{ttl}'

Display format

headers {} Extra Headers
json False Not json :)
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
parse None Parse Function
update_interval 600 Update interval in seconds, if none, the widget updates whenever

it's done.
url None Url
user_agent 'Qtile' Set the user agent
xml True Is XML :)

2.4.28 Image

class libqtile.widget.Image(length=CALCULATED, **config)
Display a PNG image on the bar

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
filename None Image filename. Can contain '~'
margin 3 Margin inside the box
margin_x None X Margin. Overrides 'margin' if set
margin_y None Y Margin. Overrides 'margin' if set
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
rotate 0.0 rotate the image in degrees counter-clockwise
scale True Enable/Disable image scaling

2.4. Built-in Widgets 83

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.29 ImapWidget

class libqtile.widget.ImapWidget(**config)
Email IMAP widget

This widget will scan one of your imap email boxes and report the number of unseen messages present. I've
configured it to only work with imap with ssl. Your password is obtained from the Gnome Keyring.

Writing your password to the keyring initially is as simple as (changing out <userid> and <password> for your
userid and password):

1) create the file ~/.local/share/python_keyring/keyringrc.cfg with the following contents:

[backend]
default-keyring=keyring.backends.Gnome.Keyring
keyring-path=/home/<userid>/.local/share/keyring/

2) Execute the following python shell script once:

#!/usr/bin/env python3
import keyring
user = <userid>
password = <password>
keyring.set_password('imapwidget', user, password)

mbox names must include the path to the mbox (except for the default INBOX). So, for example if your mailroot
is ~/Maildir, and you want to look at the mailbox at HomeMail/fred, the mbox setting would be: mbox="~/
Maildir/HomeMail/fred". Note the nested sets of quotes! Labels can be whatever you choose, of course.

Widget requirements: keyring.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
label 'INBOX' label for display
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mbox '"INBOX"' mailbox to fetch
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
server None email server name
update_interval 600 Update interval in seconds, if none, the widget updates whenever

it's done.
user None email username

84 Chapter 2. Reference

https://pypi.org/project/keyring/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.30 KeyboardKbdd

class libqtile.widget.KeyboardKbdd(**config)
Widget for changing keyboard layouts per window, using kbdd

kbdd should be installed and running, you can get it from: https://github.com/qnikst/kbdd

The widget also requires dbus-next.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
colours None foreground colour for each layouteither 'None' or a list of

colours.example: ['ffffff', 'E6F0AF'].
configured_keyboards['us', 'ir'] your predefined list of keyboard layouts.example: ['us', 'ir', 'es']
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
update_interval 1 Update interval in seconds.

2.4.31 KeyboardLayout

class libqtile.widget.KeyboardLayout(**config)
Widget for changing and displaying the current keyboard layout

To use this widget effectively you need to specify keyboard layouts you want to use (using "config-
ured_keyboards") and bind function "next_keyboard" to specific keys in order to change layouts.

For example:

Key([mod], "space", lazy.widget["keyboardlayout"].next_keyboard(), desc="Next keyboard layout."),

When running Qtile with the X11 backend, this widget requires setxkbmap to be available.

Supported bar orientations: horizontal and vertical

2.4. Built-in Widgets 85

https://github.com/qnikst/kbdd
https://pypi.org/project/dbus-next/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
configured_keyboards['us'] A list of predefined keyboard layouts represented as strings. For

example: ['us', 'us colemak', 'es', 'fr'].
display_map {} Custom display of layout. Key should be in format 'layout vari-

ant'. For example: {'us': 'us', 'lt sgs': 'sgs', 'ru phonetic': 'ru'}
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
option None string of setxkbmap option. Ex., 'compose:menu,grp_led:scroll'
padding None Padding. Calculated if None.
update_interval 1 Update time in seconds.

2.4.32 KhalCalendar

class libqtile.widget.KhalCalendar(**config)
Khal calendar widget

This widget will display the next appointment on your Khal calendar in the qtile status bar. Appointments within
the "reminder" time will be highlighted.

Widget requirements: dateutil.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'FFFF33' default foreground color
lookahead 7 days to look ahead in the calendar
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
reminder_color 'FF0000' color of calendar entries during reminder time
remindertime 10 reminder time in minutes
update_interval 600 Update interval in seconds, if none, the widget updates whenever

it's done.

86 Chapter 2. Reference

https://pypi.org/project/python-dateutil/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.33 LaunchBar

class libqtile.widget.LaunchBar(_progs: Optional[list[tuple[str, str, str]]] = None, width=CALCULATED,
**config)

A widget that display icons to launch the associated command.

Text will displayed when no icon is found.

Widget requirements: pyxdg.

Supported bar orientations: horizontal only

key default description
background None Widget background color
default_icon '/usr/share/

icons/oxygen/
256x256/
mimetypes/
application-x-executable.
png'

Default icon not found

font 'sans' Text font
fontshadow None Font shadow color, default is None (no shadow)
fontsize None Font pixel size. Calculated if None.
foreground '#ffffff' Text colour.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding 2 Padding between icons
progs [] A list of tuples (software_name, command_to_execute,

comment), for example: [('thunderbird', 'thunderbird -
safe-mode', 'launch thunderbird in safe mode'), ('logout',
'qshell:self.qtile.cmd_shutdown()', 'logout from qtile')]

2.4.34 Maildir

class libqtile.widget.Maildir(**config)
A simple widget showing the number of new mails in maildir mailboxes

Supported bar orientations: horizontal and vertical

2.4. Built-in Widgets 87

https://freedesktop.org/wiki/Software/pyxdg/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
empty_color None Display color when no new mail is available
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
hide_when_empty False Whether not to display anything if the subfolder has no new mail
maildir_path '~/Mail' path to the Maildir folder
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
nonempty_color None Display color when new mail is available
padding None Padding. Calculated if None.
separator ' ' the string to put between the subfolder strings.
sub_folders [{'label':

'Home mail',
'path':
'INBOX'},
{'label':
'Home junk',
'path':
'spam'}]

List of subfolders to scan. Each subfolder is a dict of path and
label.

subfolder_fmt '{label}:
{value}'

Display format for one subfolder

total False Whether or not to sum subfolders into a grand total. The first
label will be used.

update_interval 600 Update interval in seconds, if none, the widget updates whenever
it's done.

2.4.35 Memory

class libqtile.widget.Memory(**config)
Displays memory/swap usage

MemUsed: Returns memory in use MemTotal: Returns total amount of memory MemFree: Returns amount
of memory free MemPercent: Returns memory in use as a percentage Buffers: Returns buffer amount Active:
Returns active memory Inactive: Returns inactive memory Shmem: Returns shared memory SwapTotal: Re-
turns total amount of swap SwapFree: Returns amount of swap free SwapUsed: Returns amount of swap in use
SwapPercent: Returns swap in use as a percentage

Widget requirements: psutil.

Supported bar orientations: horizontal and vertical

88 Chapter 2. Reference

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{MemUsed:

.0f}{mm}/
{MemTotal:
.0f}{mm}'

Formatting for field names.

markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
measure_mem 'M' Measurement for Memory (G, M, K, B)
measure_swap 'M' Measurement for Swap (G, M, K, B)
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
update_interval 1.0 Update interval for the Memory

2.4.36 MemoryGraph

class libqtile.widget.MemoryGraph(**config)
Displays a memory usage graph.

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None Widget background color
border_color '215578' Widget border color
border_width 2 Widget border width
fill_color '1667EB.3' Fill color for linefill graph
frequency 1 Update frequency in seconds
graph_color '18BAEB' Graph color
line_width 3 Line width
margin_x 3 Margin X
margin_y 3 Margin Y
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
samples 100 Count of graph samples.
start_pos 'bottom' Drawer starting position ('bottom'/'top')
type 'linefill' 'box', 'line', 'linefill'

2.4. Built-in Widgets 89

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.37 Mirror

class libqtile.widget.Mirror(reflection, **config)
A widget for showing the same widget content in more than one place, for instance, on bars across multiple
screens.

You don't need to use it directly; instead, just instantiate your widget once and hand it in to multiple bars. For
instance:

cpu = widget.CPUGraph()
clock = widget.Clock()

screens = [
Screen(top=bar.Bar([widget.GroupBox(), cpu, clock])),
Screen(top=bar.Bar([widget.GroupBox(), cpu, clock])),

]

Widgets can be passed to more than one bar, so that there don't need to be any duplicates executing the same
code all the time, and they'll always be visually identical.

This works for all widgets that use drawers (and nothing else) to display their contents. Currently, this is all
widgets except for Systray.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.

2.4.38 Moc

class libqtile.widget.Moc(**config)
A simple MOC widget.

Show the artist and album of now listening song and allow basic mouse control from the bar:

• toggle pause (or play if stopped) on left click;

• skip forward in playlist on scroll up;

• skip backward in playlist on scroll down.

MOC (http://moc.daper.net) should be installed.

Supported bar orientations: horizontal and vertical

90 Chapter 2. Reference

http://moc.daper.net

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
noplay_color 'cecece' Text colour when not playing.
padding None Padding. Calculated if None.
play_color '00ff00' Text colour when playing.
update_interval 0.5 Update Time in seconds.

2.4.39 Mpd2

class libqtile.widget.Mpd2(**config)
Mpd2 Object.

Parameters
status_format: format string to display status

For a full list of values, see: MPDClient.status() and MPDClient.currentsong()

https://musicpd.org/doc/protocol/command_reference.html#command_status https:
//musicpd.org/doc/protocol/tags.html

Default:

'{play_status} {artist}/{title} \
[{repeat}{random}{single}{consume}{updating_db}]'

``play_status`` is a string from ``play_states`` dict

Note that the ``time`` property of the song renamed to ``fulltime``
to prevent conflicts with status information during formating.

idle_format: format string to display status when no song is in queue.

Default:

'{play_status} {idle_message} \
[{repeat}{random}{single}{consume}{updating_db}]'

idle_message: text to display instead of song information when MPD is idle. (i.e. no song in
queue)

Default:: "MPD IDLE"

prepare_status: dict of functions to replace values in status with custom characters.

f(status, key, space_element) => str

New functionality allows use of a dictionary of plain strings.

2.4. Built-in Widgets 91

https://musicpd.org/doc/protocol/command_reference.html#command_status
https://musicpd.org/doc/protocol/tags.html
https://musicpd.org/doc/protocol/tags.html

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Default:

status_dict = {
'repeat': 'r',
'random': 'z',
'single': '1',
'consume': 'c',
'updating_db': 'U'

}

format_fns: A dict of functions to format the various elements.

'Tag': f(str) => str

Default:: { 'all': lambda s: cgi.escape(s) }

N.B. if 'all' is present, it is processed on every element of song_info before any other
formatting is done.

mouse_buttons: A dict of mouse button numbers to actions

Widget requirements: python-mpd2_.
.. _python-mpd2: https://pypi.org/project/python-mpd2/

Supported bar orientations: horizontal and vertical

92 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
color_progress None Text color to indicate track progress.
command <function

default_cmd at
0x7f94390516c0>

command to be executed by mapped mouse button.

fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format_fns {'all':

<function
escape at
0x7f943bf5ecb0>}

Dictionary of format methods

host 'localhost' Host of mpd server
idle_format '{play_status}

{idle_message}[{repeat}{random}{single}{consume}{updating_db}]'
format for status when mpd has no playlist.

idle_message 'MPD IDLE' text to display when mpd is idle.
idletimeout 5 MPDClient idle command timeout
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_buttons {1: 'toggle',

3: 'stop', 4:
'previous', 5:
'next'}

b_num -> action.

mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions
and lazy calls.

no_connection 'No
connection'

Text when mpd is disconnected

padding None Padding. Calculated if None.
password None Password for auth on mpd server
play_states {'pause': '',

'play': '',
'stop': ''}

Play state mapping

port 6600 Port of mpd server
prepare_status {'consume':

'c', 'random':
'z', 'repeat':
'r', 'single':
'1',
'updating_db':
'U'}

characters to show the status of MPD

space '-' Space keeper
status_format '{play_status}

{artist}/
{title}
[{repeat}{random}{single}{consume}{updating_db}]'

format for displayed song info.

timeout 30 MPDClient timeout
update_interval 1 Interval of update widget

2.4. Built-in Widgets 93

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.40 Mpris2

class libqtile.widget.Mpris2(**config)
An MPRIS 2 widget

A widget which displays the current track/artist of your favorite MPRIS player. This widget scrolls the text if
neccessary and information that is displayed is configurable.

Widget requirements: dbus-next.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
display_metadata ['xesam:title',

'xesam:album',
'xesam:artist']

Which metadata identifiers to display. See http:
//www.freedesktop.org/wiki/Specifications/mpris-spec/
metadata/#index5h3 for available values

fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
name 'audacious' Name of the MPRIS widget.
objname 'org.mpris.

MediaPlayer2.
audacious'

DBUS MPRIS 2 compatible player identifier- Find it out with
dbus-monitor - Also see: http://specifications.freedesktop.org/
mpris-spec/latest/#Bus-Name-Policy

padding None Padding. Calculated if None.
scroll_chars 30 How many chars at once to display.
scroll_interval 0.5 Scroll delay interval.
scroll_wait_intervals8 Wait x scroll_interval beforescrolling/removing text
stop_pause_text None Optional text to display when in the stopped/paused state

2.4.41 Net

class libqtile.widget.Net(**config)
Displays interface down and up speed

Widget requirements: psutil.

Supported bar orientations: horizontal and vertical

94 Chapter 2. Reference

https://pypi.org/project/dbus-next/
http://www.freedesktop.org/wiki/Specifications/mpris-spec/metadata/#index5h3
http://www.freedesktop.org/wiki/Specifications/mpris-spec/metadata/#index5h3
http://www.freedesktop.org/wiki/Specifications/mpris-spec/metadata/#index5h3
http://specifications.freedesktop.org/mpris-spec/latest/#Bus-Name-Policy
http://specifications.freedesktop.org/mpris-spec/latest/#Bus-Name-Policy
https://pypi.org/project/psutil/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{interface}:

{down} ↓↑
{up}'

Display format of down/upload/total speed of given interfaces

interface None List of interfaces or single NIC as string to monitor, None to
display all active NICs combined

markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
prefix None Use a specific prefix for the unit of the speed.
update_interval 1 The update interval.
use_bits False Use bits instead of bytes per second?

2.4.42 NetGraph

class libqtile.widget.NetGraph(**config)
Display a network usage graph.

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None Widget background color
bandwidth_type 'down' down(load)/up(load)
border_color '215578' Widget border color
border_width 2 Widget border width
fill_color '1667EB.3' Fill color for linefill graph
frequency 1 Update frequency in seconds
graph_color '18BAEB' Graph color
interface 'auto' Interface to display info for ('auto' for detection)
line_width 3 Line width
margin_x 3 Margin X
margin_y 3 Margin Y
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
samples 100 Count of graph samples.
start_pos 'bottom' Drawer starting position ('bottom'/'top')
type 'linefill' 'box', 'line', 'linefill'

2.4. Built-in Widgets 95

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.43 Notify

class libqtile.widget.Notify(width=CALCULATED, **config)
A notify widget

This widget can handle actions provided by notification clients. However, only the default action is supported,
so if a client provides multiple actions then only the default (first) action can be invoked. Some programs will
provide their own notification windows if the notification server does not support actions, so if you want your
notifications to handle more than one action then specify False for the action option to disable all action
handling. Unfortunately we cannot specify the capability for exactly one action.

Supported bar orientations: horizontal and vertical

key default description
action True Enable handling of default action upon right click
audiofile None Audiofile played during notifications
background None Widget background color
default_timeout None Default timeout (seconds) for notifications
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
foreground_low 'dddddd' Foreground low priority colour
foreground_urgent'ff0000' Foreground urgent priority colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
parse_text None Function to parse and modify notifications. e.g. function

in config that removes line returns:def my_func(text) return
text.replace('n', '')then set option parse_text=my_func

2.4.44 NvidiaSensors

class libqtile.widget.NvidiaSensors(**config)
Displays temperature, fan speed and performance level Nvidia GPU.

Supported bar orientations: horizontal and vertical

96 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
foreground_alert 'ff0000' Foreground colour alert
format '{temp}°C' Display string format. Three options available: {temp} - tem-

perature, {fan_speed} and {perf} - performance level
gpu_bus_id '' GPU's Bus ID, ex: 01:00.0. If leave empty will display all

available GPU's
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
threshold 70 If the current temperature value is above, then change to fore-

ground_alert colour
update_interval 2 Update interval in seconds.

2.4.45 OpenWeather

class libqtile.widget.OpenWeather(**config)
A weather widget, data provided by the OpenWeather API.

Some format options:
• location_city

• location_cityid

• location_country

• location_lat

• location_long

• weather

• weather_details

• units_temperature

• units_wind_speed

• isotime

• humidity

• pressure

• sunrise

• sunset

• temp

• visibility

2.4. Built-in Widgets 97

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

• wind_speed

• wind_deg

• wind_direction

• main_feels_like

• main_temp_min

• main_temp_max

• clouds_all

• icon

Icon support is available but you will need a suitable font installed. A default icon mapping is provided
(OpenWeather.symbols) but changes can be made by setting weather_symbols. Available icon codes can be
viewed here: https://openweathermap.org/weather-conditions#Icon-list

Supported bar orientations: horizontal and vertical

98 Chapter 2. Reference

https://openweathermap.org/weather-conditions#Icon-list

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
app_key '7834197c2338888258f8cb94ae14ef49'Open Weather access key. A default is provided, butn

for prolonged use obtaining your own is suggested:n
https://home.openweathermap.org/users/sign_up

background None Widget background color
cityid None City ID. Can be looked up on e.g.:n

https://openweathermap.org/findn Takes precedence over
location and coordinates.n Note that this is not equal to a
WOEID.

coordinates None Dictionary containing latitude and longituden Example: coordi-
nates={"longitude": "77.22",n "latitude": "28.67"}

data None Post Data
dateformat '%Y-%m-%d ' Format for dates, defaults to ISO.n For details see: https://docs.

python.org/3/library/time.html#time.strftime
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{location_city}:

{main_temp}
°{units_temperature}
{humidity}%
{weather_details}'

Display format

headers {} Extra Headers
json True Is Json?
language 'en' Language of response. List of languages supported cann be

seen at: https://openweathermap.org/current undern Multilin-
gual support

location None Name of the city. Country name can be appendedn like cam-
bridge,NZ. Takes precedence over zip-code.

markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
metric True True to use metric/C, False to use imperial/F
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
parse None Parse Function
timeformat '%H:%M' Format for times, defaults to ISO.n For details see: https://docs.

python.org/3/library/time.html#time.strftime
update_interval 600 Update interval in seconds, if none, the widget updates whenever

it's done.
url None Url
user_agent 'Qtile' Set the user agent
weather_symbols {} Dictionary of weather symbols. Can be used to override default

symbols.
xml False Is XML?
zip None Zip code (USA) or "zip code,country code" forn other countries.

E.g. 12345,NZ. Takes precedence overn coordinates.

2.4. Built-in Widgets 99

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime
https://openweathermap.org/current
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.46 Pomodoro

class libqtile.widget.Pomodoro(**config)
Pomodoro technique widget

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
color_active '00ff00' Colour then pomodoro is running
color_break 'ffff00' Colour then it is break time
color_inactive 'ff0000' Colour then pomodoro is inactive
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
length_long_break15 Length of a long break in minutes
length_pomodori 25 Length of one pomodori in minutes
length_short_break5 Length of a short break in minutes
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
notification_on True Turn notifications on
num_pomodori 4 Number of pomodori to do in a cycle
padding None Padding. Calculated if None.
prefix_active '' Prefix then app is active
prefix_break 'B ' Prefix during short break
prefix_inactive 'POMODORO' Prefix when app is inactive
prefix_long_break'LB ' Prefix during long break
prefix_paused 'PAUSE' Prefix during pause
update_interval 1 Update interval in seconds, if none, the widget updates whenever

the event loop is idle.

2.4.47 Prompt

class libqtile.widget.Prompt(**config)
A widget that prompts for user input

Input should be started using the .start_input() method on this class.

Supported bar orientations: horizontal and vertical

100 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
bell_style 'audible' Alert at the begin/end of the command history. Possible values:

'audible' (X11 only), 'visual' and None.
cursor True Show a cursor
cursor_color 'bef098' Color for the cursor and text over it.
cursorblink 0.5 Cursor blink rate. 0 to disable.
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
ignore_dups_historyFalse Don't store duplicates in history
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
max_history 100 Commands to keep in history. 0 for no limit.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
prompt '{prompt}: ' Text displayed at the prompt
record_history True Keep a record of executed commands
visual_bell_color'ff0000' Color for the visual bell (changes prompt background).
visual_bell_time 0.2 Visual bell duration (in seconds).

2.4.48 PulseVolume

class libqtile.widget.PulseVolume(**config)
Supported bar orientations: horizontal only

2.4. Built-in Widgets 101

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
cardid None Card Id
channel 'Master' Channel
device 'default' Device Name
emoji False Use emoji to display volume states, only if theme_path is not

set.The specified font needs to contain the correct unicode char-
acters.

fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
get_volume_commandNone Command to get the current volume
limit_max_volume False Limit maximum volume to 100%
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
mute_command None Mute command
padding 3 Padding left and right. Calculated if None.
step 2 Volume change for up an down commands in percentage.Only

used if volume_up_command and volume_down_command are
not set.

theme_path None Path of the icons
update_interval 0.2 Update time in seconds.
volume_app None App to control volume
volume_down_commandNone Volume down command
volume_up_commandNone Volume up command

2.4.49 QuickExit

class libqtile.widget.QuickExit(widget=CALCULATED, **config)
A button of exiting the running qtile easily. When clicked this button, a countdown start. If the button pushed
with in the countdown again, the qtile shutdown.

Supported bar orientations: horizontal and vertical

102 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
countdown_format '[{} seconds

]'
This text is showed when counting down.

countdown_start 5 Time to accept the second pushing.
default_text '[shutdown]' A text displayed as a button
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
timer_interval 1 A countdown interval.

2.4.50 Sep

class libqtile.widget.Sep(**config)
A visible widget separator

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
foreground '888888' Separator line colour.
linewidth 1 Width of separator line.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding 2 Padding on either side of separator.
size_percent 80 Size as a percentage of bar size (0-100).

2.4.51 She

class libqtile.widget.She(**config)
Widget to display the Super Hybrid Engine status

Can display either the mode or CPU speed on eeepc computers.

Supported bar orientations: horizontal and vertical

2.4. Built-in Widgets 103

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
device '/sys/devices/

platform/
eeepc/cpufv'

sys path to cpufv

fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format 'speed' Type of info to display "speed" or "name"
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
update_interval 0.5 Update Time in seconds.

2.4.52 Spacer

class libqtile.widget.Spacer(length=STRETCH, **config)
Just an empty space on the bar

Often used with length equal to bar.STRETCH to push bar widgets to the right or bottom edge of the screen.

Parameters
length Length of the widget. Can be either bar.STRETCH or a length in pixels.

width DEPRECATED, same as length.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.

2.4.53 StatusNotifier

class libqtile.widget.StatusNotifier(**config)
A 'system tray' widget using the freedesktop StatusNotifierItem specification.

As per the specification, app icons are first retrieved from the user's current theme. If this is not available then
the app may provide its own icon. In order to use this functionality, users are recommended to install the xdg
module to support retrieving icons from the selected theme.

Letf-clicking an icon will trigger an activate event.

Note: Context menus are not currently supported by the official widget. However, a modded version of the
widget which provides basic menu support is available from elParaguayo's qtile-extras repo.

104 Chapter 2. Reference

https://pypi.org/project/xdg/
https://github.com/elParaguayo/qtile-extras

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
icon_size 16 Icon width
icon_theme None Name of theme to use for app icons
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding 3 Padding between icons

2.4.54 StockTicker

class libqtile.widget.StockTicker(**config)
A stock ticker widget, based on the alphavantage API. Users must acquire an API key from https://www.
alphavantage.co/support/#api-key

The widget defaults to the TIME_SERIES_INTRADAY API function (i.e. stock symbols), but arbitrary Alpha
Vantage API queries can be made by passing extra arguments to the constructor.

Display AMZN
widget.StockTicker(apikey=..., symbol="AMZN")

Display BTC
widget.StockTicker(

apikey=..., function="DIGITAL_CURRENCY_INTRADAY", symbol="BTC", market="USD"
)

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
data None Post Data
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
function 'TIME_SERIES_INTRADAY'The default API function to query
headers {} Extra Headers
interval '1min' The default latency to query
json True Is Json?
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
parse None Parse Function
update_interval 600 Update interval in seconds, if none, the widget updates whenever

it's done.
url None Url
user_agent 'Qtile' Set the user agent
xml False Is XML?

2.4. Built-in Widgets 105

https://www.alphavantage.co/support/#api-key
https://www.alphavantage.co/support/#api-key

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.55 SwapGraph

class libqtile.widget.SwapGraph(**config)
Display a swap info graph.

Widget requirements: psutil.

Supported bar orientations: horizontal only

key default description
background None Widget background color
border_color '215578' Widget border color
border_width 2 Widget border width
fill_color '1667EB.3' Fill color for linefill graph
frequency 1 Update frequency in seconds
graph_color '18BAEB' Graph color
line_width 3 Line width
margin_x 3 Margin X
margin_y 3 Margin Y
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
samples 100 Count of graph samples.
start_pos 'bottom' Drawer starting position ('bottom'/'top')
type 'linefill' 'box', 'line', 'linefill'

2.4.56 Systray

class libqtile.widget.Systray(**config)
A widget that manages system tray.

Only one Systray widget is allowed. Adding additional Systray widgets will result in a ConfigError.

Note: Icons will not render correctly where the bar/widget is drawn with a semi-transparent background. In-
stead, icons will be drawn with a transparent background.

If using this widget it is therefore recommended to use a fully opaque background colour or a fully transparent
one.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
icon_size 20 Icon width
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding 5 Padding between icons

106 Chapter 2. Reference

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.57 TaskList

class libqtile.widget.TaskList(**config)
Displays the icon and name of each window in the current group

Contrary to WindowTabs this is an interactive widget. The window that currently has focus is highlighted.

Supported bar orientations: horizontal only

key default description
background None Widget background color
border '215578' Border colour
borderwidth 2 Current group border width
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
highlight_method 'border' Method of highlighting (one of 'border' or 'block') Uses *_border

color settings
icon_size None Icon size. (Calculated if set to None. Icons are hidden if set to

0.)
margin 3 Margin inside the box
margin_x None X Margin. Overrides 'margin' if set
margin_y None Y Margin. Overrides 'margin' if set
markup_floating None Text markup of the floating window state. Supports pan-

gomarkup with markup=True.e.g., "{}" or "<span under-
line="low">{}"

markup_focused None Text markup of the focused window state. Supports pan-
gomarkup with markup=True.e.g., "{}" or "<span under-
line="low">{}"

markup_maximized None Text markup of the maximized window state. Supports
pangomarkup with markup=True.e.g., "{}" or "<span under-
line="low">{}"

markup_minimized None Text markup of the minimized window state. Supports
pangomarkup with markup=True.e.g., "{}" or "<span under-
line="low">{}"

markup_normal None Text markup of the normal window state. Supports pan-
gomarkup with markup=True.e.g., "{}" or "<span under-
line="low">{}"

max_title_width None Max size in pixels of task title.(if set to None, as much as avail-
able.)

mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions
and lazy calls.

padding 3 Padding inside the box
padding_x None X Padding. Overrides 'padding' if set
padding_y None Y Padding. Overrides 'padding' if set
parse_text None Function to parse and modify window names. e.g. func-

tion in config that removes excess strings from window name:
def my_func(text) for string in [" - Chromium", " - Fire-
fox"]: text = text.replace(string, "") return textthen set option
parse_text=my_func

rounded True To round or not to round borders
spacing None Spacing between tasks.(if set to None, will be equal to margin_x)

continues on next page

2.4. Built-in Widgets 107

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Table 2 – continued from previous page
key default description
title_width_methodNone Method to compute the width of task title. (None, 'uni-

form'.)Defaults to None, the normal behaviour.
txt_floating 'V ' Text representation of the floating window state. e.g., "V " or " "
txt_maximized '[] ' Text representation of the maximized window state. e.g., "[] " or

" "
txt_minimized '_ ' Text representation of the minimized window state. e.g., "_ " or

" "
unfocused_border None Border color for unfocused windows. Affects only hight-

light_method 'border' and 'block'. Defaults to None, which
means no special color.

urgent_alert_method'border' Method for alerting you of WM urgent hints (one of 'border' or
'text')

urgent_border 'FF0000' Urgent border color

2.4.58 TextBox

class libqtile.widget.TextBox(text=' ', width=CALCULATED, **config)
A flexible textbox that can be updated from bound keys, scripts, and qshell.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Text font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font pixel size. Calculated if None.
foreground '#ffffff' Foreground colour.
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding left and right. Calculated if None.

2.4.59 ThermalSensor

class libqtile.widget.ThermalSensor(**config)
Widget to display temperature sensor information

For using the thermal sensor widget you need to have lm-sensors installed. You can get a list of the tag_sensors
executing "sensors" in your terminal. Then you can choose which you want, otherwise it will display the first
available.

Widget requirements: psutil.

Supported bar orientations: horizontal and vertical

108 Chapter 2. Reference

https://pypi.org/project/psutil/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
foreground_alert 'ff0000' Foreground colour alert
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
metric True True to use metric/C, False to use imperial/F
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
show_tag False Show tag sensor
tag_sensor None Tag of the temperature sensor. For example: "temp1" or "Core

0"
threshold 70 If the current temperature value is above, then change to fore-

ground_alert colour
update_interval 2 Update interval in seconds

2.4.60 ThermalZone

class libqtile.widget.ThermalZone(**config)
Thermal zone widget.

This widget was made to read thermal zone files and transform values to human readable format. You can set
zone parameter to any standard thermal zone file from /sys/class/thermal directory.

Supported bar orientations: horizontal only

2.4. Built-in Widgets 109

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
crit 70 Critical temperature level
fgcolor_crit 'ff0000' Font color on critical values
fgcolor_high 'ffaa00' Font color on high values
fgcolor_normal 'ffffff' Font color on normal values
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{temp}°C' Display format
format_crit '{temp}°C

CRIT!'
Critical display format

hidden False Set True to only show if critical value reached
high 50 High themperature level
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
update_interval 2.0 Update interval
zone '/sys/class/

thermal/
thermal_zone0/
temp'

Thermal zone

2.4.61 Volume

class libqtile.widget.Volume(**config)
Widget that display and change volume

By default, this widget uses amixer to get and set the volume so users will need to make sure this is installed.
Alternatively, users may set the relevant parameters for the widget to use a different application.

If theme_path is set it draw widget as icons.

Supported bar orientations: horizontal only

110 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
cardid None Card Id
channel 'Master' Channel
device 'default' Device Name
emoji False Use emoji to display volume states, only if theme_path is not

set.The specified font needs to contain the correct unicode char-
acters.

fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
get_volume_commandNone Command to get the current volume
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
mute_command None Mute command
padding 3 Padding left and right. Calculated if None.
step 2 Volume change for up an down commands in percentage.Only

used if volume_up_command and volume_down_command are
not set.

theme_path None Path of the icons
update_interval 0.2 Update time in seconds.
volume_app None App to control volume
volume_down_commandNone Volume down command
volume_up_commandNone Volume up command

2.4.62 Wallpaper

class libqtile.widget.Wallpaper(**config)
Supported bar orientations: horizontal and vertical

2.4. Built-in Widgets 111

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
directory '~/Pictures/

wallpapers/'
Wallpaper Directory

fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
label None Use a fixed label instead of image name.
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
option 'fill' How to fit the wallpaper when wallpaper_command isNone.

None, 'fill' or 'stretch'.
padding None Padding. Calculated if None.
random_selection False If set, use random initial wallpaper and randomly cycle through

the wallpapers.
wallpaper None Wallpaper
wallpaper_command['feh',

'--bg-fill']
Wallpaper command. If None, thewallpaper will be painted
without the use of a helper.

2.4.63 WidgetBox

class libqtile.widget.WidgetBox(_widgets: Optional[list[libqtile.widget.base._Widget]] = None, **config)
A widget to declutter your bar.

WidgetBox is a widget that hides widgets by default but shows them when the box is opened.

Widgets that are hidden will still update etc. as if they were on the main bar.

Button clicks are passed to widgets when they are visible so callbacks will work.

Widgets in the box also remain accessible via command interfaces.

Widgets can only be added to the box via the configuration file. The widget is configured by adding widgets to
the "widgets" parameter as follows:

widget.WidgetBox(widgets=[
widget.TextBox(text="This widget is in the box"),
widget.Memory()
]

),

Supported bar orientations: horizontal only

112 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
close_button_location'left' Location of close button when box open ('left' or 'right')
font 'sans' Text font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font pixel size. Calculated if None.
foreground '#ffffff' Foreground colour.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
text_closed '[<]' Text when box is closed
text_open '[>]' Text when box is open
widgets [] A list of widgets to include in the box

2.4.64 WindowCount

class libqtile.widget.WindowCount(width=CALCULATED, **config)
A simple widget to display the number of windows in the current group of the screen on which the widget is.

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Text font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font pixel size. Calculated if None.
foreground '#ffffff' Foreground colour.
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding left and right. Calculated if None.
show_zero False Show window count when no windows
text_format '{num}' Format for message

2.4. Built-in Widgets 113

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.65 WindowName

class libqtile.widget.WindowName(width=STRETCH, **config)
Displays the name of the window that currently has focus

Supported bar orientations: horizontal and vertical

key default description
background None Widget background color
empty_group_string' ' string to display when no windows are focused on current group
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
for_current_screenFalse instead of this bars screen use currently active screen
foreground 'ffffff' Foreground colour
format '{state}{name}' format of the text
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
parse_text None Function to parse and modify window names. e.g. func-

tion in config that removes excess strings from window name:
def my_func(text) for string in [" - Chromium", " - Fire-
fox"]: text = text.replace(string, "") return textthen set option
parse_text=my_func

2.4.66 WindowTabs

class libqtile.widget.WindowTabs(**config)
Displays the name of each window in the current group. Contrary to TaskList this is not an interactive widget.
The window that currently has focus is highlighted.

Supported bar orientations: horizontal and vertical

114 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
parse_text None Function to parse and modify window names. e.g. func-

tion in config that removes excess strings from window name:
def my_func(text) for string in [" - Chromium", " - Fire-
fox"]: text = text.replace(string, "") return textthen set option
parse_text=my_func

selected ('', '</
b>')

Selected task indicator

separator ' | ' Task separator text.

2.4.67 Wlan

class libqtile.widget.Wlan(**config)
Displays Wifi SSID and quality.

Widget requirements: iwlib.

Supported bar orientations: horizontal only

key default description
background None Widget background color
disconnected_message'Disconnected' String to show when the wlan is diconnected.
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '{essid}

{quality}/70'
Display format. For percents you can use "{essid} {per-
cent:2.0%}"

interface 'wlan0' The interface to monitor
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
update_interval 1 The update interval.

2.4. Built-in Widgets 115

https://pypi.org/project/iwlib/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2.4.68 Wttr

class libqtile.widget.Wttr(**config)
Display weather widget provided by wttr.in.

To specify your own custom output format, use the special %-notation (example: 'My_city: %t(%f), wind: %w'):

• %c Weather condition,

• %C Weather condition textual name,

• %h Humidity,

• %t Temperature (Actual),

• %f Temperature (Feels Like),

• %w Wind,

• %l Location,

• %m Moonphase ,

• %M Moonday,

• %p precipitation (mm),

• %P pressure (hPa),

• %D Dawn !,

• %S Sunrise !,

• %z Zenith !,

• %s Sunset !,

• %d Dusk !. (!times are shown in the local timezone)

Add the character ~ at the beginning to get weather for some special location: ~Vostok Station or ~Eiffel
Tower.

Also can use IP-addresses (direct) or domain names (prefixed with @) to specify a location: @github.com,
123.456.678.123

Specify multiple locations as dictionary

location={
'Minsk': 'Minsk',
'64.127146,-21.873472': 'Reykjavik',

}

Cities will change randomly every update.

Supported bar orientations: horizontal and vertical

116 Chapter 2. Reference

https://github.com/chubin/wttr.in/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

key default description
background None Widget background color
data None Post Data
fmt '{}' How to format the text
font 'sans' Default font
fontshadow None font shadow color, default is None(no shadow)
fontsize None Font size. Calculated if None.
foreground 'ffffff' Foreground colour
format '3' Display text format. Choose presets in range 1-4 (Ex. "1") or

build your own custom output format, use the special %-notation.
See https://github.com/chubin/wttr.in#one-line-output

headers {} Extra Headers
json False Is Json?
lang 'en' Display text language. List of supported languages https://wttr.

in/:translation
location None Dictionary. Key is a city or place name, or GPS coordinates.

Value is a display name.
markup True Whether or not to use pango markup
max_chars 0 Maximum number of characters to display in widget.
mouse_callbacks {} Dict of mouse button press callback functions. Acceps functions

and lazy calls.
padding None Padding. Calculated if None.
parse None Parse Function
units 'm' 'm' - metric, 'M' - show wind speed in m/s, 'u' - United States

units
update_interval 600 Update interval in seconds. Recommendation: if you want to

display multiple locations alternately, maybe set a smaller inter-
val, ex. 30.

url None Url
user_agent 'Qtile' Set the user agent
xml False Is XML?

2.5 Default Config File

Copyright (c) 2010 Aldo Cortesi
Copyright (c) 2010, 2014 dequis
Copyright (c) 2012 Randall Ma
Copyright (c) 2012-2014 Tycho Andersen
Copyright (c) 2012 Craig Barnes
Copyright (c) 2013 horsik
Copyright (c) 2013 Tao Sauvage
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in

(continues on next page)

2.5. Default Config File 117

https://github.com/chubin/wttr.in#one-line-output
https://wttr.in/:translation
https://wttr.in/:translation

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

from libqtile import bar, layout, widget
from libqtile.config import Click, Drag, Group, Key, Match, Screen
from libqtile.lazy import lazy
from libqtile.utils import guess_terminal

mod = "mod4"
terminal = guess_terminal()

keys = [
A list of available commands that can be bound to keys can be found
at https://docs.qtile.org/en/latest/manual/config/lazy.html
Switch between windows
Key([mod], "h", lazy.layout.left(), desc="Move focus to left"),
Key([mod], "l", lazy.layout.right(), desc="Move focus to right"),
Key([mod], "j", lazy.layout.down(), desc="Move focus down"),
Key([mod], "k", lazy.layout.up(), desc="Move focus up"),
Key([mod], "space", lazy.layout.next(), desc="Move window focus to other window"),
Move windows between left/right columns or move up/down in current stack.
Moving out of range in Columns layout will create new column.
Key([mod, "shift"], "h", lazy.layout.shuffle_left(), desc="Move window to the left"),
Key([mod, "shift"], "l", lazy.layout.shuffle_right(), desc="Move window to the right

→˓"),
Key([mod, "shift"], "j", lazy.layout.shuffle_down(), desc="Move window down"),
Key([mod, "shift"], "k", lazy.layout.shuffle_up(), desc="Move window up"),
Grow windows. If current window is on the edge of screen and direction
will be to screen edge - window would shrink.
Key([mod, "control"], "h", lazy.layout.grow_left(), desc="Grow window to the left"),
Key([mod, "control"], "l", lazy.layout.grow_right(), desc="Grow window to the right

→˓"),
Key([mod, "control"], "j", lazy.layout.grow_down(), desc="Grow window down"),
Key([mod, "control"], "k", lazy.layout.grow_up(), desc="Grow window up"),
Key([mod], "n", lazy.layout.normalize(), desc="Reset all window sizes"),
Toggle between split and unsplit sides of stack.
Split = all windows displayed
Unsplit = 1 window displayed, like Max layout, but still with
multiple stack panes
Key(

[mod, "shift"],
"Return",
lazy.layout.toggle_split(),
desc="Toggle between split and unsplit sides of stack",

),

(continues on next page)

118 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

Key([mod], "Return", lazy.spawn(terminal), desc="Launch terminal"),
Toggle between different layouts as defined below
Key([mod], "Tab", lazy.next_layout(), desc="Toggle between layouts"),
Key([mod], "w", lazy.window.kill(), desc="Kill focused window"),
Key([mod, "control"], "r", lazy.reload_config(), desc="Reload the config"),
Key([mod, "control"], "q", lazy.shutdown(), desc="Shutdown Qtile"),
Key([mod], "r", lazy.spawncmd(), desc="Spawn a command using a prompt widget"),

]

groups = [Group(i) for i in "123456789"]

for i in groups:
keys.extend(

[
mod1 + letter of group = switch to group
Key(

[mod],
i.name,
lazy.group[i.name].toscreen(),
desc="Switch to group {}".format(i.name),

),
mod1 + shift + letter of group = switch to & move focused window to group
Key(

[mod, "shift"],
i.name,
lazy.window.togroup(i.name, switch_group=True),
desc="Switch to & move focused window to group {}".format(i.name),

),
Or, use below if you prefer not to switch to that group.
mod1 + shift + letter of group = move focused window to group
Key([mod, "shift"], i.name, lazy.window.togroup(i.name),
desc="move focused window to group {}".format(i.name)),

]
)

layouts = [
layout.Columns(border_focus_stack=["#d75f5f", "#8f3d3d"], border_width=4),
layout.Max(),
Try more layouts by unleashing below layouts.
layout.Stack(num_stacks=2),
layout.Bsp(),
layout.Matrix(),
layout.MonadTall(),
layout.MonadWide(),
layout.RatioTile(),
layout.Tile(),
layout.TreeTab(),
layout.VerticalTile(),
layout.Zoomy(),

]

widget_defaults = dict(

(continues on next page)

2.5. Default Config File 119

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

font="sans",
fontsize=12,
padding=3,

)
extension_defaults = widget_defaults.copy()

screens = [
Screen(

bottom=bar.Bar(
[

widget.CurrentLayout(),
widget.GroupBox(),
widget.Prompt(),
widget.WindowName(),
widget.Chord(

chords_colors={
"launch": ("#ff0000", "#ffffff"),

},
name_transform=lambda name: name.upper(),

),
widget.TextBox("default config", name="default"),
widget.TextBox("Press <M-r> to spawn", foreground="#d75f5f"),
widget.Systray(),
widget.Clock(format="%Y-%m-%d %a %I:%M %p"),
widget.QuickExit(),

],
24,
border_width=[2, 0, 2, 0], # Draw top and bottom borders
border_color=["ff00ff", "000000", "ff00ff", "000000"] # Borders are␣

→˓magenta
),

),
]

Drag floating layouts.
mouse = [

Drag([mod], "Button1", lazy.window.set_position_floating(), start=lazy.window.get_
→˓position()),

Drag([mod], "Button3", lazy.window.set_size_floating(), start=lazy.window.get_
→˓size()),

Click([mod], "Button2", lazy.window.bring_to_front()),
]

dgroups_key_binder = None
dgroups_app_rules = [] # type: list
follow_mouse_focus = True
bring_front_click = False
cursor_warp = False
floating_layout = layout.Floating(

float_rules=[
Run the utility of `xprop` to see the wm class and name of an X client.
*layout.Floating.default_float_rules,

(continues on next page)

120 Chapter 2. Reference

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

Match(wm_class="confirmreset"), # gitk
Match(wm_class="makebranch"), # gitk
Match(wm_class="maketag"), # gitk
Match(wm_class="ssh-askpass"), # ssh-askpass
Match(title="branchdialog"), # gitk
Match(title="pinentry"), # GPG key password entry

]
)
auto_fullscreen = True
focus_on_window_activation = "smart"
reconfigure_screens = True

If things like steam games want to auto-minimize themselves when losing
focus, should we respect this or not?
auto_minimize = True

When using the Wayland backend, this can be used to configure input devices.
wl_input_rules = None

XXX: Gasp! We're lying here. In fact, nobody really uses or cares about this
string besides java UI toolkits; you can see several discussions on the
mailing lists, GitHub issues, and other WM documentation that suggest setting
this string if your java app doesn't work correctly. We may as well just lie
and say that we're a working one by default.
#
We choose LG3D to maximize irony: it is a 3D non-reparenting WM written in
java that happens to be on java's whitelist.
wmname = "LG3D"

2.5. Default Config File 121

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

122 Chapter 2. Reference

CHAPTER

THREE

ADVANCED SCRIPTING

3.1 Scripting

3.1.1 Client-Server Scripting Model

Qtile has a client-server control model - the main Qtile instance listens on a named pipe, over which marshalled
command calls and response data is passed. This allows Qtile to be controlled fully from external scripts. Re-
mote interaction occurs through an instance of the libqtile.command.interface.IPCCommandInterface class.
This class establishes a connection to the currently running instance of Qtile. A libqtile.command.client.
InteractiveCommandClient can use this connection to dispatch commands to the running instance. Commands
then appear as methods with the appropriate signature on the InteractiveCommandClient object. The object hier-
archy is described in the Commands API section of this manual. Full command documentation is available through the
Qtile Shell.

3.1.2 Example

Below is a very minimal example script that inspects the current Qtile instance, and returns the integer offset of the
current screen.

from libqtile.command.client import InteractiveCommandClient
c = InteractiveCommandClient()
print(c.screen.info()["index"])

3.2 Commands API

Qtile's command API is based on a graph of objects, where each object has a set of associated commands. The graph
and object commands are used in a number of different places:

• Commands can be bound to keys in the Qtile configuration file.

• Commands can be called through qtile shell, the Qtile shell.

• The shell can also be hooked into a Jupyter kernel called iqshell.

• Commands can be called from a script to interact with Qtile from Python.

If the explanation below seems a bit complex, please take a moment to explore the API using the qtile shell com-
mand shell. Command lists and detailed documentation can be accessed from its built-in help command.

123

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

3.2.1 Introduction: Object Graph

The objects in Qtile's object graph come in seven flavours, matching the seven basic components of the window man-
ager: layouts, windows, groups, bars, widgets, screens, and a special root node. Objects are addressed by a
path specification that starts at the root, and follows the edges of the graph. This is what the graph looks like:

root

bar

group

layout

screen

widget

window

core

Each arrow can be read as "holds a reference to". So, we can see that a widget object holds a reference to objects of
type bar, screen and group. Lets start with some simple examples of how the addressing works. Which particular
objects we hold reference to depends on the context - for instance, widgets hold a reference to the screen that they
appear on, and the bar they are attached to.

Lets look at an example, starting at the root node. The following script runs the status command on the root node,
which, in this case, is represented by the InteractiveCommandClient object:

from libqtile.command.client import InteractiveCommandClient
c = InteractiveCommandClient()
print(c.status())

The InteractiveCommandClient is a class that allows us to traverse the command graph using attributes to select
child nodes or commands. In this example, we have resolved the status() command on the root object. The interactive
command client will automatically find and connect to a running Qtile instance, and which it will use to dispatch the
call and print out the return.

An alternative is to use the CommandClient, which allows for a more precise resolution of command graph objects,

124 Chapter 3. Advanced scripting

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

but is not as easy to interact with from a REPL:

from libqtile.command.client import CommandClient
c = CommandClient()
print(c.call("status")())

Like the interactive client, the command client will automatically connect to a running Qtile instance. Here, we first
resolve the status() command with the .call("status"), which simply located the function, then we can invoke
the call with no arguments.

For the rest of this example, we will use the interactive command client. From the graph, we can see that the root node
holds a reference to group nodes. We can access the "info" command on the current group like so:

c.group.info()

To access a specific group, regardless of whether or not it is current, we use the Python mapping lookup syntax. This
command sends group "b" to screen 1 (by the libqtile.config.Group.to_screen() method):

c.group["b"].to_screen(1)

In different contexts, it is possible to access a default object, where in other contexts a key is required. From the root
of the graph, the current group, layout, screen and window can be accessed by simply leaving the key specifier out.
The key specifier is mandatory for widget and bar nodes.

With this context, we can now drill down deeper in the graph, following the edges in the graphic above. To access the
screen currently displaying group "b", we can do this:

c.group["b"].screen.info()

Be aware, however, that group "b" might not currently be displayed. In that case, it has no associated screen, the path
resolves to a non-existent node, and we get an exception:

libqtile.command.CommandError: No object screen in path 'group['b'].screen'

The graph is not a tree, since it can contain cycles. This path (redundantly) specifies the group belonging to the screen
that belongs to group "b":

c.group["b"].screen.group

This amout of connectivity makes it easy to reach out from a given object when callbacks and events fire on that object
to related objects.

3.2.2 Keys

The key specifier for the various object types are as follows:

3.2. Commands API 125

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Object Key Optional? Example
bar "top", "bottom" No

c.screen.bar["bottom"]

group Name string Yes

c.group["one"]
c.group

layout Integer index Yes

c.layout[2]
c.layout

screen Integer index Yes

c.screen[1]
c.screen

widget Widget name No

c.widget["textbox"]

window Integer window ID Yes

c.window[123456]
c.window

3.2.3 Digging Deeper: Command Objects

If you just want to script your Qtile window manager the above information, in addition to the documentation on the
various scripting commands should be enough to get started. To develop the Qtile manager itself, we can dig into how
Qtile represents these objects, which will lead to the way the commands are dispatched.

All of the configured objects setup by Qtile are CommandObject subclasses. These objects are so named because we
can issue commands against them using the command scripting API. Looking through the code, the commands that
are exposed are commands named cmd_*. When writing custom layouts, widgets, or any other object, you can add
your own custom cmd_ functions and they will be callable using the standard command infrastructure. An available
command can be extracted by calling .command() with the name of the command.

In addition to having a set of associated commands, each command object also has a collection of items associated
with it. This is what forms the graph that is shown above. For a given object type, the items() method returns all of
the names of the associated objects of that type and whether or not there is a defaultable value. For example, from the
root, .items("group") returns the name of all of the groups and that there is a default value, the currently focused
group.

To navigate from one command object to the next, the .select() method is used. This method resolves a requested
object from the command graph by iteratively selecting objects. A selector like [("group", "b"), ("screen",
None)] would be to first resolve group "b", then the screen associated to the group.

126 Chapter 3. Advanced scripting

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

3.2.4 The Command Graph

In order to help in specifying command objects, there is the abstract command graph structure. The command graph
structure allows us to address any valid command object and issue any command against it without needing to have
any Qtile instance running or have anything to resolve the objects to. This is particularly useful when constructing lazy
calls, where the Qtile instance does not exist to specify the path that will be resolved when the command is executed.
The only limitation of traversing the command graph is that it must follow the allowed edges specified in the first section
above.

Every object in the command graph is represented by a CommandGraphNode. Any call can be resolved from a
given node. In addition, each node knows about all of the children objects that can be reached from it and have
the ability to .navigate() to the other nodes in the command graph. Each of the object types are represented as
CommandGraphObject types and the root node of the graph, the CommandGraphRoot represents the Qtile instance.
When a call is performed on an object, it returns a CommandGraphCall. Each call will know its own name as well as
be able to resolve the path through the command graph to be able to find itself.

Note that the command graph itself can standalone, there is no other functionality within Qtile that it relies on. While
we could have started here and built up, it is helpful to understand the objects that the graph is meant to represent, as
the graph is just a representation of a traversal of the real objects in a running Qtile window manager. In order to tie
the running Qtile instance to the abstract command graph, we move on to the command interface.

3.2.5 Executing graph commands: Command Interface

The CommandInterface is what lets us take an abstract call on the command graph and resolve it against a running
command object. Put another way, this is what takes the graph traversal .group["b"].screen.info() and executes
the info() command against the addressed screen object. Additional functionality can be used to check that a given
traversal resolves to actual objcets and that the requested command actually exists. Note that by construction of the
command graph, the traversals here must be feasible, even if they cannot be resolved for a given configuration state.
For example, it is possible to check the screen assoctiated to a group, even though the group may not be on a screen,
but it is not possible to check the widget associated to a group.

The simplest form of the command interface is the QtileCommandInterface, which can take an in-process Qtile
instance as the root CommandObject and execute requested commands. This is typically how we run the unit tests for
Qtile.

The other primary example of this is the IPCCommandInterface which is able to then route all calls through an IPC
client connected to a running Qtile instance. In this case, the command graph call can be constructed on the client side
without having to dispatch to Qtile and once the call is constructed and deemed valid, the call can be executed.

In both of these cases, executing a command on a command interface will return the result of executing the command on
a running Qtile instance. To support lazy execution, the LazyCommandInterface instead returns a LazyCall which
is able to be resolved later by the running Qtile instance when it is configured to fire.

3.2.6 Tying it together: Command Client

So far, we have our running Command Objects and the Command Interface to dispatch commands against these objects
as well as the Command Graph structure itself which encodes how to traverse the connections between the objects. The
final component which ties everything together is the Command Client, which allows us to navigate through the graph
to resolve objects, find their associated commands, and execute the commands against the held command interface.

The idea of the command client is that it is created with a reference into the command graph and a command interface.
All navigation can be done against the command graph, and traversal is done by creating a new command client starting
from the new node. When a command is executed against a node, that command is dispatched to the held command
interface. The key decision here is how to perform the traversal. The command client exists in two different flavors:
the standard CommandClient which is useful for handling more programatic traversal of the graph, calling methods to

3.2. Commands API 127

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

traverse the graph, and the InteractiveCommandClientwhich behaves more like a standard Python object, traversing
by accessing properties and performing key lookups.

Returning to our examples above, we now have the full context to see what is going on when we call:

from libqtile.command.client import CommandClient
c = CommandClient()
print(c.call("status")())
from libqtile.command.client import InteractiveCommandClient
c = InteractiveCommandClient()
print(c.status())

In both cases, the command clients are constructed with the default command interface, which sets up an IPC connection
to the running Qtile instance, and starts the client at the graph root. When we call c.call("status") or c.status,
we navigate the command client to the status command on the root graph object. When these are invoked, the
commands graph calls are dispatched via the IPC command interface and the results then sent back and printed on the
local command line.

The power that can be realized by separating out the traversal and resolution of objects in the command graph
from actually invoking or looking up any objects within the graph can be seen in the lazy module. By creating a
lazy evaluated command client, we can expose the graph traversal and object resolution functionality via the same
InteractiveCommandClient that is used to perform live command execution in the Qtile prompt.

3.3 Scripting Commands

Here is documented some of the commands available on objects in the command tree when running qtile shell
or scripting commands to qtile. Note that this is an incomplete list, some objects, such as layouts and widgets, may
implement their own set of commands beyond those given here.

3.3.1 Qtile

class libqtile.core.manager.Qtile(kore: libqtile.backend.base.Core, config, no_spawn: bool = False, state:
Optional[str] = None, socket_path: Optional[str] = None)

This object is the root of the command graph

cmd_add_rule(match_args: dict[str, Any], rule_args: dict[str, Any], min_priorty: bool = False)
Add a dgroup rule, returns rule_id needed to remove it

Parameters
match_args config.Match arguments

rule_args config.Rule arguments

min_priorty If the rule is added with minimum priority (last) (default: False)

cmd_addgroup(group: str, label: str | None = None, layout: str | None = None, layouts: list[Layout] | None =
None)→ bool

Add a group with the given name

cmd_commands()→ list[str]
Returns a list of possible commands for this object

Used by __qsh__ for command completion and online help

cmd_critical()→ None
Set log level to CRITICAL

128 Chapter 3. Advanced scripting

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

cmd_debug()→ None
Set log level to DEBUG

cmd_delgroup(group: str)→ None
Delete a group with the given name

cmd_display_kb(*args)→ str
Display table of key bindings

cmd_doc(name)→ str
Returns the documentation for a specified command name

Used by __qsh__ to provide online help.

cmd_error()→ None
Set log level to ERROR

cmd_eval(code: str)→ tuple[bool, str | None]
Evaluates code in the same context as this function

Return value is tuple (success, result), success being a boolean and result being a string representing the
return value of eval, or None if exec was used instead.

cmd_findwindow(prompt: str = 'window', widget: str = 'prompt')→ None
Launch prompt widget to find a window of the given name

Parameters
prompt Text with which to prompt user (default: "window")

widget Name of the prompt widget (default: "prompt")

cmd_function(function, *args, **kwargs)→ None
Call a function with current object as argument

cmd_get_state()→ str
Get pickled state for restarting qtile

cmd_get_test_data()→ Any
Returns any content arbitrarily set in the self.test_data attribute. Useful in tests.

cmd_groups()→ dict[str, dict[str, Any]]
Return a dictionary containing information for all groups

Examples

groups()

cmd_hide_show_bar(position: Literal['top', 'bottom', 'left', 'right', 'all'] = 'all')→ None
Toggle visibility of a given bar

Parameters
position one of: "top", "bottom", "left", "right", or "all" (default: "all")

cmd_info()→ None
Set log level to INFO

cmd_internal_windows()→ list[dict[str, Any]]
Return info for each internal window (bars, for example)

cmd_items(name)→ tuple[bool, list[str | int] | None]
Returns a list of contained items for the specified name

3.3. Scripting Commands 129

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Used by __qsh__ to allow navigation of the object graph.

cmd_labelgroup(prompt: str = 'label', widget: str = 'prompt')→ None
Launch prompt widget to label the current group

Parameters
prompt Text with which to prompt user (default: "label")

widget Name of the prompt widget (default: "prompt")

cmd_list_widgets()→ list[str]
List of all addressible widget names

cmd_loglevel()→ int

cmd_loglevelname()→ str

cmd_next_layout(name: Optional[str] = None)→ None
Switch to the next layout.

Parameters
name Group name. If not specified, the current group is assumed

cmd_next_screen()→ None
Move to next screen

cmd_next_urgent()→ None
Focus next window with urgent hint

cmd_pause()→ None
Drops into pdb

cmd_prev_layout(name: Optional[str] = None)→ None
Switch to the previous layout.

Parameters
name Group name. If not specified, the current group is assumed

cmd_prev_screen()→ None
Move to the previous screen

cmd_qtile_info()→ dict
Returns a dictionary of info on the Qtile instance

cmd_qtilecmd(prompt: str = 'command', widget: str = 'prompt', messenger: str = 'xmessage')→ None
Execute a Qtile command using the client syntax

Tab completion aids navigation of the command tree

Parameters
prompt Text to display at the prompt (default: "command: ")

widget Name of the prompt widget (default: "prompt")

messenger Command to display output, set this to None to disable (default: "xmessage")

cmd_reconfigure_screens(ev: Any = None)→ None
This can be used to set up screens again during run time. Intended usage is to be called when the
screen_change hook is fired, responding to changes in physical monitor setup by configuring qtile.screens
accordingly. The ev kwarg is ignored; it is here in case this function is hooked directly to screen_change.

130 Chapter 3. Advanced scripting

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

cmd_reload_config()→ None
Reload the configuration file.

Can also be triggered by sending Qtile a SIGUSR1 signal.

cmd_remove_rule(rule_id: int)→ None
Remove a dgroup rule by rule_id

cmd_restart()→ None
Restart Qtile.

Can also be triggered by sending Qtile a SIGUSR2 signal.

cmd_run_extension(extension: libqtile.extension.base._Extension)→ None
Run extensions

cmd_screens()→ list[dict[str, Any]]
Return a list of dictionaries providing information on all screens

cmd_shutdown()→ None
Quit Qtile

cmd_simulate_keypress(modifiers, key)→ None
Simulates a keypress on the focused window.

Parameters
modifiers A list of modifier specification strings. Modifiers can be one of "shift", "lock",

"control" and "mod1" - "mod5".

key Key specification.

Examples

simulate_keypress(["control", "mod2"], "k")

cmd_spawn(cmd: str | list[str], shell: bool = False)→ int
Run cmd, in a shell or not (default).

cmd may be a string or a list (similar to subprocess.Popen).

Examples

spawn("firefox")

spawn(["xterm", "-T", "Temporary terminal"])

cmd_spawncmd(prompt: str = 'spawn', widget: str = 'prompt', command: str = '%s', complete: str = 'cmd',
shell: bool = True, aliases: Optional[dict[str, str]] = None)→ None

Spawn a command using a prompt widget, with tab-completion.

Parameters
prompt Text with which to prompt user (default: "spawn: ").

widget Name of the prompt widget (default: "prompt").

command command template (default: "%s").

complete Tab completion function (default: "cmd")

shell Execute the command with /bin/sh (default: True)

3.3. Scripting Commands 131

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

aliases Dictionary mapping aliases to commands. If the entered command is a key in this
dict, the command it maps to will be executed instead.

cmd_status()→ Literal['OK']
Return "OK" if Qtile is running

cmd_switch_groups(namea: str, nameb: str)→ None
Switch position of two groups by name

cmd_switchgroup(prompt: str = 'group', widget: str = 'prompt')→ None
Launch prompt widget to switch to a given group to the current screen

Parameters
prompt Text with which to prompt user (default: "group")

widget Name of the prompt widget (default: "prompt")

cmd_sync()→ None
Sync the backend's event queue. Should only be used for development.

cmd_to_layout_index(index: str, name: Optional[str] = None)→ None
Switch to the layout with the given index in self.layouts.

Parameters
index Index of the layout in the list of layouts.

name Group name. If not specified, the current group is assumed.

cmd_to_screen(n: int)→ None
Warp focus to screen n, where n is a 0-based screen number

Examples

to_screen(0)

cmd_togroup(prompt: str = 'group', widget: str = 'prompt')→ None
Launch prompt widget to move current window to a given group

Parameters
prompt Text with which to prompt user (default: "group")

widget Name of the prompt widget (default: "prompt")

cmd_tracemalloc_dump()→ tuple[bool, str]
Dump tracemalloc snapshot

cmd_tracemalloc_toggle()→ None
Toggle tracemalloc status

Running tracemalloc is required for qtile top

cmd_ungrab_all_chords()→ None
Leave all chord modes and grab the root bindings

cmd_ungrab_chord()→ None
Leave a chord mode

cmd_validate_config()→ None

cmd_warning()→ None
Set log level to WARNING

132 Chapter 3. Advanced scripting

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

cmd_windows()→ list[dict[str, Any]]
Return info for each client window

3.3.2 Bar

class libqtile.bar.Bar(widgets, size, **config)
A bar, which can contain widgets

Parameters
widgets A list of widget objects.

size The "thickness" of the bar, i.e. the height of a horizontal bar, or the width of a vertical bar.

key default description
background '#000000' Background colour.
border_color '#000000' Border colour as str or list of str [N E S W]
border_width 0 Width of border as int of list of ints [N E S W]
margin 0 Space around bar as int or list of ints [N E S W].
opacity 1 Bar window opacity.

cmd_commands()→ list[str]
Returns a list of possible commands for this object

Used by __qsh__ for command completion and online help

cmd_doc(name)→ str
Returns the documentation for a specified command name

Used by __qsh__ to provide online help.

cmd_eval(code: str)→ tuple[bool, str | None]
Evaluates code in the same context as this function

Return value is tuple (success, result), success being a boolean and result being a string representing the
return value of eval, or None if exec was used instead.

cmd_fake_button_press(screen, position, x, y, button=1)
Fake a mouse-button-press on the bar. Co-ordinates are relative to the top-left corner of the bar.

:screen The integer screen offset :position One of "top", "bottom", "left", or "right"

cmd_function(function, *args, **kwargs)→ None
Call a function with current object as argument

cmd_info()
Info for this object.

cmd_items(name)→ tuple[bool, list[str | int] | None]
Returns a list of contained items for the specified name

Used by __qsh__ to allow navigation of the object graph.

3.3. Scripting Commands 133

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

3.3.3 Group

class libqtile.config.Group(name: str, matches: Optional[list[libqtile.config.Match]] = None,
exclusive=False, spawn: Optional[Union[str, list[str]]] = None, layout:
Optional[str] = None, layouts: Optional[list] = None, persist=True, init=True,
layout_opts=None, screen_affinity=None, position=9223372036854775807,
label: Optional[str] = None)

Represents a "dynamic" group

These groups can spawn apps, only allow certain Matched windows to be on them, hide when they're not in use,
etc. Groups are identified by their name.

Parameters
name: string the name of this group

matches: default ``None`` list of Match objects whose windows will be assigned to this group

exclusive: boolean when other apps are started in this group, should we allow them here or not?

spawn: string or list of strings this will be exec() d when the group is created, you can pass
either a program name or a list of programs to exec()

layout: string the name of default layout for this group (e.g. 'max' or 'stack'). This is the name
specified for a particular layout in config.py or if not defined it defaults in general the class
name in all lower case.

layouts: list the group layouts list overriding global layouts. Use this to define a separate list of
layouts for this particular group.

persist: boolean should this group stay alive with no member windows?

init: boolean is this group alive when qtile starts?

position int group position

label: string the display name of the group. Use this to define a display name other than name
of the group. If set to None, the display name is set to the name.

3.3.4 Screen

class libqtile.config.Screen(top: BarType | None = None, bottom: BarType | None = None, left: BarType |
None = None, right: BarType | None = None, wallpaper: str | None = None,
wallpaper_mode: str | None = None, x: int | None = None, y: int | None =
None, width: int | None = None, height: int | None = None)

A physical screen, and its associated paraphernalia.

Define a screen with a given set of Bars of a specific geometry. Note that bar.Bar objects can only be placed at
the top or the bottom of the screen (bar.Gap objects can be placed anywhere). Also, x, y, width, and height
aren't specified usually unless you are using 'fake screens'.

The wallpaper parameter, if given, should be a path to an image file. How this image is painted to the screen
is specified by the wallpaper_mode parameter. By default, the image will be placed at the screens origin and
retain its own dimensions. If the mode is 'fill', the image will be centred on the screen and resized to fill it. If the
mode is 'stretch', the image is stretched to fit all of it into the screen.

cmd_commands()→ list[str]
Returns a list of possible commands for this object

Used by __qsh__ for command completion and online help

134 Chapter 3. Advanced scripting

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

cmd_doc(name)→ str
Returns the documentation for a specified command name

Used by __qsh__ to provide online help.

cmd_eval(code: str)→ tuple[bool, str | None]
Evaluates code in the same context as this function

Return value is tuple (success, result), success being a boolean and result being a string representing the
return value of eval, or None if exec was used instead.

cmd_function(function, *args, **kwargs)→ None
Call a function with current object as argument

cmd_info()
Returns a dictionary of info for this screen.

cmd_items(name)→ tuple[bool, list[str | int] | None]
Returns a list of contained items for the specified name

Used by __qsh__ to allow navigation of the object graph.

cmd_next_group(skip_empty=False, skip_managed=False)
Switch to the next group

cmd_prev_group(skip_empty=False, skip_managed=False, warp=True)
Switch to the previous group

cmd_resize(x=None, y=None, w=None, h=None)
Resize the screen

cmd_set_wallpaper(path, mode=None)
Set the wallpaper to the given file.

cmd_toggle_group(group_name=None, warp=True)
Switch to the selected group or to the previously active one

3.3.5 Window

class libqtile.backend.base.Window
A regular Window belonging to a client.

Abstract methods are required to be defined as part of a specific backend's implementation. Non-abstract methods
have default implementations here to be shared across backends.

abstract cmd_bring_to_front()→ None
Bring the window to the front

cmd_center()→ None
Centers a floating window on the screen.

cmd_commands()→ list[str]
Returns a list of possible commands for this object

Used by __qsh__ for command completion and online help

abstract cmd_disable_floating()→ None
Tile the window.

abstract cmd_disable_fullscreen()→ None
Un-fullscreen the window

3.3. Scripting Commands 135

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

cmd_doc(name)→ str
Returns the documentation for a specified command name

Used by __qsh__ to provide online help.

cmd_down_opacity()→ None
Decrease the window's opacity by 10%.

abstract cmd_enable_floating()→ None
Float the window.

abstract cmd_enable_fullscreen()→ None
Fullscreen the window

cmd_eval(code: str)→ tuple[bool, str | None]
Evaluates code in the same context as this function

Return value is tuple (success, result), success being a boolean and result being a string representing the
return value of eval, or None if exec was used instead.

abstract cmd_focus(warp: bool = True)→ None
Focuses the window.

cmd_function(function, *args, **kwargs)→ None
Call a function with current object as argument

abstract cmd_get_position()→ tuple[int, int]
Get the (x, y) of the window

abstract cmd_get_size()→ tuple[int, int]
Get the (width, height) of the window

cmd_info()→ dict
Return a dictionary of info.

cmd_items(name)→ tuple[bool, list[str | int] | None]
Returns a list of contained items for the specified name

Used by __qsh__ to allow navigation of the object graph.

abstract cmd_kill()→ None
Kill the window. Try to be polite.

cmd_match(*args, **kwargs)→ bool

abstract cmd_move_floating(dx: int, dy: int)→ None
Move window by dx and dy

cmd_opacity(opacity: float)→ None
Set the window's opacity.

The value must be between 0 and 1 inclusive.

abstract cmd_place(x, y, width, height, borderwidth, bordercolor, above=False, margin=None)→ None
Place the window with the given position and geometry.

abstract cmd_resize_floating(dw: int, dh: int)→ None
Add dw and dh to size of window

abstract cmd_set_position(x: int, y: int)→ None
Move floating window to x and y; swap tiling window with the window under the pointer.

abstract cmd_set_position_floating(x: int, y: int)→ None
Move window to x and y

136 Chapter 3. Advanced scripting

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

abstract cmd_set_size_floating(w: int, h: int)→ None
Set window dimensions to w and h

abstract cmd_static(screen: Optional[int] = None, x: Optional[int] = None, y: Optional[int] = None,
width: Optional[int] = None, height: Optional[int] = None)→ None

Makes this window a static window, attached to a Screen.

Values left unspecified are taken from the existing window state.

abstract cmd_toggle_floating()→ None
Toggle the floating state of the window.

abstract cmd_toggle_fullscreen()→ None
Toggle the fullscreen state of the window.

abstract cmd_toggle_maximize()→ None
Toggle the maximize state of the window.

abstract cmd_toggle_minimize()→ None
Toggle the minimize state of the window.

cmd_togroup(group_name: Optional[str] = None, groupName: Optional[str] = None, switch_group: bool =
False, toggle: bool = False)→ None

Move window to a specified group

Also switch to that group if switch_group is True.

If toggle is True and and the specified group is already on the screen, use the last used group as target
instead.

groupName is deprecated and will be dropped soon. Please use group_name instead.

cmd_toscreen(index: Optional[int] = None)→ None
Move window to a specified screen.

If index is not specified, we assume the current screen

Examples

Move window to current screen:

toscreen()

Move window to screen 0:

toscreen(0)

cmd_up_opacity()→ None
Increase the window's opacity by 10%.

3.3. Scripting Commands 137

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

3.4 Keybindings in images

3.4.1 Default configuration

138 Chapter 3. Advanced scripting

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

3.4. Keybindings in images 139

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

3.4.2 Generate your own images

Qtile provides a tiny helper script to generate keybindings images from a config file. In the repository, the script is
located under scripts/gen-keybinding-img.

This script accepts a configuration file and an output directory. If no argument is given, the default configuration will
be used and files will be placed in same directory where the command has been run.

usage: gen-keybinding-img [-h] [-c CONFIGFILE] [-o OUTPUT_DIR]

Qtile keybindings image generator

optional arguments:
-h, --help show this help message and exit
-c CONFIGFILE, --config CONFIGFILE

use specified configuration file. If no presented
default will be used

-o OUTPUT_DIR, --output-dir OUTPUT_DIR
set directory to export all images to

140 Chapter 3. Advanced scripting

CHAPTER

FOUR

GETTING INVOLVED

4.1 Hacking on Qtile

4.1.1 Requirements

Here are Qtile's additional dependencies that may be required for tests:

Dependency Ubuntu Package Needed for
pytest python3-pytest Running tests
PyGObject python3-gi Running tests (test windows)
Xephyr xserver-xephyr Testing with X11 backend (optional, see below)
mypy python3-mypy Testing qtile check (optional)
imagemagick>=6.8 imagemagick test/test_images* (optional)
gtk-layer-shell libgtk-layer-shell0 Testing notification windows in Wayland (optional)
dbus-launch dbus-x11 Testing dbus-using widgets (optional)
notifiy-send libnotify-bin Testing Notify widget (optional)
xvfb xvfb Testing with X11 headless (optional)

Backends

The test suite can be run using the X11 or Wayland backend, or both. By default, only the X11 backend is used for
tests. To test a single backend or both backends, specify as arguments to pytest:

pytest --backend wayland # Test just Wayland backend
pytest --backend x11 --backend wayland # Test both

Testing with the X11 backend requires Xephyr (and xvfb for headless mode) in addition to the core dependencies.

4.1.2 Building cffi module

Qtile ships with a small in-tree pangocairo binding built using cffi, pangocffi.py, and also binds to xcursor with cffi.
The bindings are not built at run time and will have to be generated manually when the code is downloaded or when
any changes are made to the cffi library. This can be done by calling:

./scripts/ffibuild

141

https://docs.pytest.org
https://freedesktop.org/wiki/Software/Xephyr
https://freedesktop.org/wiki/Software/Xephyr

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

4.1.3 Setting up the environment

In the root of the project, run ./dev.sh. It will create a virtualenv called venv.

Activate this virtualenv with . venv/bin/activate. Deactivate it with the deactivate command.

4.1.4 Building the documentation

To build the documentation, you will also need to install graphviz.

Go into the docs/ directory and run pip install -r requirements.txt.

Build the documentation with make html.

Check the result by opening _build/html/index.html in your browser.

4.1.5 Development and testing

In practice, the development cycle looks something like this:

1. make minor code change

2. run appropriate test: pytest tests/test_module.py or pytest -k PATTERN

3. GOTO 1, until hackage is complete

4. run entire test suite: pytest

5. commit

Of course, your patches should also pass the unit tests as well (i.e. make check). These will be run by ci on every pull
request so you can see whether or not your contribution passes.

4.1.6 Coding style

While not all of our code follows PEP8, we do try to adhere to it where possible. All new code should be PEP8
compliant.

The make lint command will run a linter with our configuration over libqtile to ensure your patch complies with
reasonable formatting constraints. We also request that git commit messages follow the standard format.

4.1.7 Logging

Logs are important to us because they are our best way to see what Qtile is doing when something abnormal happens.
However, our goal is not to have as many logs as possible, as this hinders readability. What we want are relevant logs.

To decide which log level to use, refer to the following scenarios:

• ERROR: a problem affects the behavior of Qtile in a way that is noticeable to the end user, and we can't work
around it.

• WARNING: a problem causes Qtile to operate in a suboptimal manner.

• INFO: the state of Qtile has changed.

• DEBUG: information is worth giving to help the developer better understand which branch the process is in.

142 Chapter 4. Getting involved

https://www.graphviz.org/download/
https://www.python.org/dev/peps/pep-0008/
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Be careful not to overuse DEBUG and clutter the logs. No information should be duplicated between two messages.

Also, keep in mind that any other level than DEBUG is aimed at users who don't necessarily have advanced program-
ming knowledge; adapt your message accordingly. If it can't make sense to your grandma, it's probably meant to be a
DEBUG message.

4.1.8 Deprecation policy

When a widget API is changed, you should deprecate the change using libqtile.widget.base.deprecated to
warn users, in addition to adding it to the appropriate place in the changelog. We will typically remove deprecated
APIs one tag after they are deprecated.

4.1.9 Using Xephyr

Qtile has a very extensive test suite, using the Xephyr nested X server. When tests are run, a nested X server with a
nested instance of Qtile is fired up, and then tests interact with the Qtile instance through the client API. The fact that
we can do this is a great demonstration of just how completely scriptable Qtile is. In fact, Qtile is designed expressly
to be scriptable enough to allow unit testing in a nested environment.

The Qtile repo includes a tiny helper script to let you quickly pull up a nested instance of Qtile in Xephyr, using your
current configuration. Run it from the top-level of the repository, like this:

./scripts/xephyr

Change the screen size by setting the SCREEN_SIZE environment variable. Default: 800x600. Example:

SCREEN_SIZE=1920x1080 ./scripts/xephyr

Change the log level by setting the LOG_LEVEL environment variable. Default: INFO. Example:

LOG_LEVEL=DEBUG ./scripts/xephyr

The script will also pass any additional options to Qtile. For example, you can use a specific configuration file like this:

./scripts/xephyr -c ~/.config/qtile/other_config.py

Once the Xephyr window is running and focused, you can enable capturing the keyboard shortcuts by hitting Con-
trol+Shift. Hitting them again will disable the capture and let you use your personal keyboard shortcuts again.

You can close the Xephyr window by enabling the capture of keyboard shortcuts and hit Mod4+Control+Q. Mod4 (or
Mod) is usually the Super key (or Windows key). You can also close the Xephyr window by running qtile cmd-obj
-o cmd -f shutdown in a terminal (from inside the Xephyr window of course).

You don't need to run the Xephyr script in order to run the tests as the test runner will launch its own Xephyr instances.

4.1. Hacking on Qtile 143

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

4.1.10 Second X Session

Some users prefer to test Qtile in a second, completely separate X session: Just switch to a new tty and run startx
normally to use the ~/.xinitrc X startup script.

It's likely though that you want to use a different, customized startup script for testing purposes, for example ~/.
config/qtile/xinitrc. You can do so by launching X with:

startx ~/.config/qtile/xinitrc

startx deals with multiple X sessions automatically. If you want to use xinit instead, you need to first copy /etc/
X11/xinit/xserverrc to ~/.xserverrc; when launching it, you have to specify a new session number:

xinit ~/.config/qtile/xinitrc -- :1

Examples of custom X startup scripts are available in qtile-examples.

4.1.11 Debugging in PyCharm

Make sure to have all the requirements installed and your development environment setup.

PyCharm should automatically detect the venv virtualenv when opening the project. If you are using another viir-
tualenv, just instruct PyCharm to use it in Settings -> Project: qtile -> Project interpreter.

In the project tree, on the left, right-click on the libqtile folder, and click on Mark Directory as -> Sources
Root.

Next, add a Configuration using a Python template with these fields:

• Script path: bin/qtile, or the absolute path to it

• Parameters: -c libqtile/resources/default_config.py, or nothing if you want to use your own config
file in ~/.config/qtile/config.py

• Environment variables: PYTHONUNBUFFERED=1;DISPLAY=:1

• Working directory: the root of the project

• Add contents root to PYTHONPATH: yes

• Add source root to PYTHONPATH: yes

Then, in a terminal, run:

Xephyr +extension RANDR -screen 1920x1040 :1 -ac &

Note that we used the same display, :1, in both the terminal command and the PyCharm configuration environment
variables. Feel free to change the screen size to fit your own screen.

Finally, place your breakpoints in the code and click on Debug!

Once you finished debugging, you can close the Xephyr window with kill PID (use the jobs builtin to get its PID).

144 Chapter 4. Getting involved

https://github.com/qtile/qtile-examples

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

4.1.12 Debugging in VSCode

Make sure to have all the requirements installed and your development environment setup.

Open the root of the repo in VSCode. If you have created it, VSCode should detect the venv virtualenv, if not, select
it.

Create a launch.json file with the following lines.

{
"version": "0.2.0",
"configurations": [

{
"name": "Python: Qtile",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/bin/qtile",
"cwd": "${workspaceFolder}",
"args": ["-c", "libqtile/resources/default_config.py"],
"console": "integratedTerminal",
"env": {"PYTHONUNBUFFERED":"1", "DISPLAY":":1"}

}
]

}

Then, in a terminal, run:

Xephyr +extension RANDR -screen 1920x1040 :1 -ac &

Note that we used the same display, :1, in both the terminal command and the VSCode configuration environment
variables. Then debug usually in VSCode. Feel free to change the screen size to fit your own screen.

4.1.13 Resources

Here are a number of resources that may come in handy:

• Inter-Client Conventions Manual

• Extended Window Manager Hints

• A reasonable basic Xlib Manual

4.1.14 Troubleshoot

Cairo errors

When running the Xephyr script (./scripts/xephyr), you might see tracebacks with attribute errors like the follow-
ing or similar:

AttributeError: cffi library 'libcairo.so.2' has no function, constant or global␣
→˓variable named 'cairo_xcb_surface_create'

If it happens, it might be because the cairocffi and xcffib dependencies were installed in the wrong order.

To fix this:

4.1. Hacking on Qtile 145

https://tronche.com/gui/x/icccm/
https://specifications.freedesktop.org/wm-spec/wm-spec-latest.html
https://tronche.com/gui/x/xlib/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

1. uninstall them from your environment: with pip uninstall cairocffi xcffib if using a virtualenv, or with
your system package-manager if you installed the development version of Qtile system-wide.

2. re-install them sequentially (again, with pip or with your package-manager):

pip install xcffib
pip install --no-cache-dir cairocffi

See this issue comment for more information.

If you are using your system package-manager and the issue still happens, the packaging of cairocffi might be
broken for your distribution. Try to contact the persons responsible for cairocffi's packaging on your distribution,
or to install it from the sources with xcffib available.

Fonts errors

When running the test suite or the Xephyr script (./scripts/xephyr), you might see errors in the output like the
following or similar:

• Xephyr script:

xterm: cannot load font "-Misc-Fixed-medium-R-*-*-13-120-75-75-C-120-ISO10646-1"
xterm: cannot load font "-misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-
→˓iso10646-1"

• pytest:

---------- Captured stderr call ----------
Warning: Cannot convert string "8x13" to type FontStruct
Warning: Unable to load any usable ISO8859 font
Warning: Unable to load any usable ISO8859 font
Error: Aborting: no font found

-------- Captured stderr teardown --------
Qtile exited with exitcode: -9

If it happens, it might be because you're missing fonts on your system.

On ArchLinux, you can fix this by installing xorg-fonts-misc:

sudo pacman -S xorg-fonts-misc

Try to search for "xorg fonts misc" with your distribution name on the internet to find how to install them.

4.2 Contributing

4.2.1 Reporting bugs

Perhaps the easiest way to contribute to Qtile is to report any bugs you run into on the GitHub issue tracker.

Useful bug reports are ones that get bugs fixed. A useful bug report normally has two qualities:

1. Reproducible. If your bug is not reproducible it will never get fixed. You should clearly mention the steps to
reproduce the bug. Do not assume or skip any reproducing step. Described the issue, step-by-step, so that it is
easy to reproduce and fix.

146 Chapter 4. Getting involved

https://github.com/qtile/qtile/issues/994#issuecomment-497984551
https://github.com/qtile/qtile/issues

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

2. Specific. Do not write a essay about the problem. Be Specific and to the point. Try to summarize the problem
in minimum words yet in effective way. Do not combine multiple problems even they seem to be similar. Write
different reports for each problem.

Ensure to include any appropriate log entries from ~/.local/share/qtile/qtile.log and/or ~/.
xsession-errors! Sometimes, an xtrace is requested. If that is the case, refer to capturing an xtrace.

4.2.2 Writing code

To get started writing code for Qtile, check out our guide to Hacking on Qtile. A more detailed page on creating widgets
is available here.

Important: Use a separate git branch to make rebasing easy. Ideally, you would git checkout -b
<my_feature_branch_name> before starting your work.

See also: using git.

Submit a pull request

You've done your hacking and are ready to submit your patch to Qtile. Great! Now it's time to submit a pull request to
our issue tracker on GitHub.

Important: Pull requests are not considered complete until they include all of the following:

• Code that conforms to PEP8 and is formatted by black.

• Unit tests that pass locally and in our CI environment (More below). Please add unit tests to ensure that your
code works and stays working!

• Documentation updates on an as needed basis.

• A qtile migrate migration is required for config-breaking changes. See migrate.py for examples and consult
the bowler documentation for detailed help and documentation.

• Code that does not include unrelated changes. Examples for this are formatting changes, replacing quotes or
whitespace in other parts of the code or "fixing" linter warnings popping up in your editor on existing code. Do
not include anything like the above!

• Widgets don't need to catch their own exceptions, or introduce their own polling infrastructure. The code
in libqtile.widget.base.* does all of this. Your widget should generally only include whatever pars-
ing/rendering code is necessary, any other changes should go at the framework level. Make sure to double-check
that you are not re-implementing parts of libqtile.widget.base.

• Commit messages are more important that Github PR notes, since this is what people see when they are spelunk-
ing via git blame. Please include all relevant detail in the actual git commit message (things like exact stack
traces, copy/pastes of discussion in IRC/mailing lists, links to specifications or other API docs are all good). If
your PR fixes a Github issue, it might also be wise to link to it with #1234 in the commit message.

• PRs with multiple commits should not introduce code in one patch to then change it in a later patch. Please do a
patch-by-patch review of your PR, and make sure each commit passes CI and makes logical sense on its own. In
other words: do introduce your feature in one commit and maybe add the tests and documentation in a seperate
commit. Don't push commits that partially implement a feature and are basically broken.

4.2. Contributing 147

https://help.github.com/articles/using-pull-requests
https://github.com/qtile/qtile/issues
https://black.readthedocs.io
https://github.com/qtile/qtile/blob/libqtile/scripts/migrate.py
https://pybowler.io

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

Note: Others might ban force-pushes, we allow them and prefer them over incomplete commits or commits that have
a bad and meaningless commit description.

Feel free to add your contribution (no matter how small) to the appropriate place in the CHANGELOG as well!

Unit testing

We must test each unit of code to ensure that new changes to the code do not break existing functionality. The framework
we use to test Qtile is pytest. How pytest works is outside of the scope of this documentation, but there are tutorials
online that explain how it is used.

Our tests are written inside the test folder at the top level of the repository. Reading through these, you can get a
feel for the approach we take to test a given unit. Most of the tests involve an object called manager. This is the test
manager (defined in test/helpers.py), which exposes a command client at manager.c that we use to test a Qtile instance
running in a separate thread as if we were using a command client from within a running Qtile session.

For any Qtile-specific question on testing, feel free to ask on our issue tracker or on IRC (#qtile on irc.oftc.net).

Running tests locally

This section gives an overview about tox so that you don't have to search its documentation just to get started. Checks
are grouped in so-called environments. Some of them are configured to check that the code works (the usual unit
test, e.g. py39, pypy3), others make sure that your code conforms to the style guide (pep8, codestyle, mypy). A
third kind of test verifies that the documentation and packaging processes work (docs, docstyle, packaging).

The following examples show how to run tests locally:
• To run the functional tests, use tox -e py39 (or a different environment). You can specify to only run a

specific test file or even a specific test within that file with the following commands:

tox -e py39 # Run all tests with python 3.9 as the interpreter
tox -e py39 -- -x test/widgets/test_widgetbox.py # run a single file
tox -e py39 -- -x test/widgets/test_widgetbox.py::test_widgetbox_widget

• To run style and building checks, use tox -e docs,packaging,pep8,.... You can use -p auto to run
the environments in parallel.

Important: The CI is configured to run all the environments. Hence it can be time- consuming to make
all the tests pass. As stated above, pull requests that don't pass the tests are considered incomplete. Don't
forget that this does not only include the functionality, but the style, typing annotations (if necessary) and
documentation as well!

148 Chapter 4. Getting involved

https://docs.pytest.org
https://github.com/qtile/qtile/issues
https://tox.readthedocs.io/en/latest/

CHAPTER

FIVE

MISCELLANEOUS

5.1 Frequently Asked Questions

5.1.1 Why the name Qtile?

Users often wonder, why the Q? Does it have something to do with Qt? No. Below is an IRC excerpt where cortesi
explains the great trial that ultimately brought Qtile into existence, thanks to the benevolence of the Open Source Gods.
Praise be to the OSG!

ramnes: what does Qtile mean?
ramnes: what's the Q?
@tych0: ramnes: it doesn't :)
@tych0: cortesi was just looking for the first letter that wasn't registered

in a domain name with "tile" as a suffix
@tych0: qtile it was :)
cortesi: tych0, dx: we really should have something more compelling to

explain the name. one day i was swimming at manly beach in sydney,
where i lived at the time. suddenly, i saw an enormous great white
right beside me. it went for my leg with massive, gaping jaws, but
quick as a flash, i thumb-punched it in both eyes. when it reared
back in agony, i saw that it had a jagged, gnarly scar on its
stomach... a scar shaped like the letter "Q".

cortesi: while it was distracted, i surfed a wave to shore. i knew that i
had to dedicate my next open source project to the ocean gods, in
thanks for my lucky escape. and thus, qtile got its name...

5.1.2 When I first start xterm/urxvt/rxvt containing an instance of Vim, I see text and
layout corruption. What gives?

Vim is not handling terminal resizes correctly. You can fix the problem by starting your xterm with the "-wf" option,
like so:

xterm -wf -e vim

Alternatively, you can just cycle through your layouts a few times, which usually seems to fix it.

149

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

5.1.3 How do I know which modifier specification maps to which key?

To see a list of modifier names and their matching keys, use the xmodmap command. On my system, the output looks
like this:

$ xmodmap
xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x32), Shift_R (0x3e)
lock Caps_Lock (0x9)
control Control_L (0x25), Control_R (0x69)
mod1 Alt_L (0x40), Alt_R (0x6c), Meta_L (0xcd)
mod2 Num_Lock (0x4d)
mod3
mod4 Super_L (0xce), Hyper_L (0xcf)
mod5 ISO_Level3_Shift (0x5c), Mode_switch (0xcb)

5.1.4 My "pointer mouse cursor" isn't the one I expect it to be!

Qtile should set the default cursor to left_ptr, you must install xcb-util-cursor if you want support for themed cursors.

5.1.5 LibreOffice menus don't appear or don't stay visible

A workaround for problem with the mouse in libreoffice is setting the environment variable
»SAL_USE_VCLPLUGIN=gen«. It is dependet on your system configuration where to do this. e.g. ArchLinux with
libreoffice-fresh in /etc/profile.d/libreoffice-fresh.sh.

5.1.6 How can I get my groups to stick to screens?

This behaviour can be replicated by configuring your keybindings to not move groups between screens. For example
if you want groups "1", "2" and "3" on one screen and "q", "w", and "e" on the other, instead of binding keys to
lazy.group[name].toscreen(), use this:

def go_to_group(name: str) -> Callable:
def _inner(qtile: Qtile) -> None:

if len(qtile.screens) == 1:
qtile.groups_map[name].cmd_toscreen()
return

if name in '123':
qtile.focus_screen(0)
qtile.groups_map[name].cmd_toscreen()

else:
qtile.focus_screen(1)
qtile.groups_map[name].cmd_toscreen()

return _inner

for i in groups:
keys.append(Key([mod], i.name, lazy.function(go_to_group(i.name))))

150 Chapter 5. Miscellaneous

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

If you use the GroupBox widget you can make it reflect this behaviour:

groupbox1 = widget.GroupBox(visible_groups=['1', '2', '3'])
groupbox2 = widget.GroupBox(visible_groups=['q', 'w', 'e'])

And if you jump between having single and double screens then modifying the visible groups on the fly may be useful:

@hook.subscribe.screens_reconfigured
async def _():

if len(qtile.screens) > 1:
groupbox1.visible_groups = ['1', '2', '3']

else:
groupbox1.visible_groups = ['1', '2', '3', 'q', 'w', 'e']

if hasattr(groupbox1, 'bar'):
groupbox1.bar.draw()

5.1.7 Where can I find example configurations and other scripts?

Please visit our qtile-examples repo which contains examples of users' configurations, scripts and other useful links.

5.2 License

This project is distributed under the MIT license.

Copyright (c) 2008, Aldo Cortesi All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5.2. License 151

https://github.com/qtile/qtile-examples

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

152 Chapter 5. Miscellaneous

CHAPTER

SIX

TIPS & TRICKS

6.1 How to create a widget

The aim of this page is to explain the main components of qtile widgets, how they work, and how you can use them to
create your own widgets.

Note: This page is not meant to be an exhaustive summary of everything needed to make a widget.

It is highly recommended that users wishing to create their own widget refer to the source documentation of existing
widgets to familiarise themselves with the code.

However, the detail below may prove helpful when read in conjunction with the source code.

6.1.1 What is a widget?

In Qtile, a widget is a small drawing that is displayed on the user's bar. The widget can display text, images and
drawings. In addition, the widget can be configured to update based on timers, hooks, dbus_events etc. and can also
respond to mouse events (clicks, scrolls and hover).

6.1.2 Widget base classes

Qtile provides a number of base classes for widgets than can be used to implement commonly required features (e.g.
display text).

Your widget should inherit one of these classes. Whichever base class you inherit for your widget, if you override either
the __init__ and/or _configure methods, you should make sure that your widget calls the equivalent method from
the superclass.

class MyCustomWidget(base._TextBox):

def __init__(self, **config):
super().__init__("", **config)
My widget's initialisation code here

The functions of the various base classes are explained further below.

153

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

_Widget

This is the base widget class that defines the core components required for a widget. All other base classes are based
off this class.

This is like a blank canvas so you're free to do what you want but you don't have any of the extra functionality provided
by the other base classes.

The base._Widget class is therefore typically used for widgets that want to draw graphics on the widget as opposed
to displaying text.

_TextBox

The base._TextBox class builds on the bare widget and adds a drawer.TextLayout which is accessible via the
self.layout property. The widget will adjust its size to fit the amount of text to be displayed.

Text can be updated via the self.text property but note that this does not trigger a redrawing of the widget.

Parameters including font, fontsize, fontshadow, padding and foreground (font colour) can be configured. It
is recommended not to hard-code these parameters as users may wish to have consistency across units.

InLoopPollText

The base.InLoopPollText class builds on the base._TextBox by adding a timer to periodically refresh the dis-
played text.

Widgets using this class should override the poll method to include a function that returns the required text.

Note: This loop runs in the event loop so it is important that the poll method does not call some blocking function. If
this is required, widgets should inherit the base.ThreadPoolText class (see below).

ThreadPoolText

The base.ThreadPoolText class is very similar to the base.InLoopPollText class. The key difference is that the
poll method is run asynchronously and triggers a callback once the function completes. This allows widgets to get
text from long-running functions without blocking Qtile.

6.1.3 Mixins

As well as inheriting from one of the base classes above, widgets can also inherit one or more mixins to provide some
additional functionality to the widget.

154 Chapter 6. Tips & Tricks

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

PaddingMixin

This provides the padding(_x|_y|) attributes which can be used to change the appearance of the widget.

If you use this mixin in your widget, you need to add the following line to your __init__ method:

self.add_defaults(base.PaddingMixin.defaults)

MarginMixin

The MarginMixin is essentially effectively exactly the same as the PaddingMixin but, instead, it provides the
margin(_x|_y|) attributes.

As above, if you use this mixin in your widget, you need to add the following line to your __init__ method:

self.add_defaults(base.MarginMixin.defaults)

6.1.4 Configuration

Now you know which class to base your widget on, you need to know how the widget gets configured.

Defining Parameters

Each widget will likely have a number of parameters that users can change to customise the look and feel and/or
behaviour of the widget for their own needs.

The widget should therefore provide the default values of these parameters as a class attribute called defaults. The
format of this attribute is a list of tuples.

defaults = [
("parameter_name",
default_parameter_value,
"Short text explaining what parameter does")

]

Users can override the default value when creating their config.py file.

MyCustomWidget(parameter_name=updated_value)

Once the widget is initialised, these parameters are available at self.parameter_name.

The __init__ method

Parameters that should not be changed by users can be defined in the __init__ method.

This method is run when the widgets are initially created. This happens before the qtile object is available.

6.1. How to create a widget 155

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

The _configure method

The _configure method is called by the bar object and sets the self.bar and self.qtile attributes of the widget.
It also creates the self.drawer attribute which is necessary for displaying any content.

Once this method has been run, your widget should be ready to display content as the bar will draw once it has finished
its configuration.

Calls to methods required to prepare the content for your widget should therefore be made from this method rather than
__init__.

6.1.5 Displaying output

A Qtile widget is just a drawing that is displayed at a certain location the user's bar. The widget's job is therefore to
create a small drawing surface that can be placed in the appropriate location on the bar.

The "draw" method

The draw method is called when the widget needs to update its appearance. This can be triggered by the widget itself
(e.g. if the content has changed) or by the bar (e.g. if the bar needs to redraw its entire contents).

This method therefore needs to contain all the relevant code to draw the various components that make up the widget.
Examples of displaying text, icons and drawings are set out below.

It is important to note that the bar controls the placing of the widget by assigning the offsetx value (for horizontal
positioning) and offsety value (for vertical positioning). Widgets should use this at the end of the drawmethod. Both
offsetx and offsety are required as both values will be set if the bar is drawing a border.

self.drawer.draw(offsetx=self.offsetx, offsety=self.offsety, width=self.width)

Note: If you need to trigger a redrawing of your widget, you should call self.draw() if the width of your widget is
unchanged. Otherwise you need to call self.bar.draw() as this method means the bar recalculates the position of
all widgets.

Displaying text

Text is displayed by using a drawer.TextLayout object. If all you are doing is displaying text then it's highly recom-
mended that you use the `base._TextBox superclass as this simplifies adding and updating text.

If you wish to implement this manually then you can create a your own drawer.TextLayout by using the self.
drawer.textlayoutmethod of the widget (only available after the _configure method has been run). object to include
in your widget.

Some additional formatting of Text can be displayed using pango markup and ensuring the markup parameter is set to
True.

self.textlayout = self.drawer.textlayout(
"Text",
"fffff", # Font colour
"sans", # Font family
12, # Font size
None, # Font shadow

(continues on next page)

156 Chapter 6. Tips & Tricks

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(continued from previous page)

markup=False, # Pango markup (False by default)
wrap=True # Wrap long lines (True by default)
)

Displaying icons and images

Qtile provides a helper library to convert images to a surface that can be drawn by the widget. If the images are
static then you should only load them once when the widget is configured. Given the small size of the bar, this is most
commonly used to draw icons but the same method applies to other images.

from libqtile import images

def setup_images(self):

self.surfaces = {}

File names to load (will become keys to the `surfaces` dictionary)
names = (

"audio-volume-muted",
"audio-volume-low",
"audio-volume-medium",
"audio-volume-high"

)

d_images = images.Loader(self.imagefolder)(*names) # images.Loader can take more␣
→˓than one folder as an argument

for name, img in d_images.items():
new_height = self.bar.height - 1
img.resize(height=new_height) # Resize images to fit widget
self.surfaces[name] = img.pattern # Images added to the `surfaces` dictionary

Drawing the image is then just a matter of painting it to the relevant surface:

def draw(self):
self.drawer.ctx.set_source(self.surfaces[img_name]) # Use correct key here for your␣

→˓image
self.drawer.ctx.paint()
self.drawer.draw(offsetx=self.offset, width=self.length)

Drawing shapes

It is possible to draw shapes directly to the widget. The Drawer class (available in your widget after configura-
tion as self.drawer) provides some basic functions rounded_rectangle, rounded_fillrect, rectangle and
fillrect.

In addition, you can access the Cairo context drawing functions via self.drawer.ctx.

For example, the following code can draw a wifi icon showing signal strength:

6.1. How to create a widget 157

https://pycairo.readthedocs.io/en/latest/reference/context.html

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

import math

...

def to_rads(self, degrees):
return degrees * math.pi / 180.0

def draw_wifi(self, percentage):

WIFI_HEIGHT = 12
WIFI_ARC_DEGREES = 90

y_margin = (self.bar.height - WIFI_HEIGHT) / 2
half_arc = WIFI_ARC_DEGREES / 2

Draw grey background
self.drawer.ctx.new_sub_path()
self.drawer.ctx.move_to(WIFI_HEIGHT, y_margin + WIFI_HEIGHT)
self.drawer.ctx.arc(WIFI_HEIGHT,

y_margin + WIFI_HEIGHT,
WIFI_HEIGHT,
self.to_rads(270 - half_arc),
self.to_rads(270 + half_arc))

self.drawer.set_source_rgb("666666")
self.drawer.ctx.fill()

Draw white section to represent signal strength
self.drawer.ctx.new_sub_path()
self.drawer.ctx.move_to(WIFI_HEIGHT, y_margin + WIFI_HEIGHT)
self.drawer.ctx.arc(WIFI_HEIGHT

y_margin + WIFI_HEIGHT,
WIFI_HEIGHT * percentage,
self.to_rads(270 - half_arc),
self.to_rads(270 + half_arc))

self.drawer.set_source_rgb("ffffff")
self.drawer.ctx.fill()

This creates something looking like this: .

Background

At the start of the draw method, the widget should clear the drawer by drawing the background. Usually this is done
by including the following line at the start of the method:

self.drawer.clear(self.background or self.bar.background)

The background can be a single colour or a list of colours which will result in a linear gradient from top to bottom.

158 Chapter 6. Tips & Tricks

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

6.1.6 Updating the widget

Widgets will usually need to update their content periodically. There are numerous ways that this can be done. Some
of the most common are summarised below.

Timers

A non-blocking timer can be called by using the self.timeout_add method.

self.timeout_add(delay_in_seconds, method_to_call, (method_args))

Note: Consider using the ThreadPoolText superclass where you are calling a function repeatedly and displaying its
output as text.

Hooks

Qtile has a number of hooks built in which are triggered on certain events.

The WindowCount widget is a good example of using hooks to trigger updates. It includes the following method which
is run when the widget is configured:

from libqtile import hook

...

def _setup_hooks(self):
hook.subscribe.client_killed(self._win_killed)
hook.subscribe.client_managed(self._wincount)
hook.subscribe.current_screen_change(self._wincount)
hook.subscribe.setgroup(self._wincount)

Read the Built-in Hooks page for details of which hooks are available and which arguments are passed to the callback
function.

Using dbus

Qtile uses dbus-next for interacting with dbus.

If you just want to listen for signals then Qtile provides a helper method called add_signal_receiver which can
subscribe to a signal and trigegr a callback whenever that signal is broadcast.

Note: Qtile uses the asyncio based functions of dbus-next so your widget must make sure, where necessary, calls
to dbus are made via coroutines.

There is a _config_async coroutine in the base widget class which can be overriden to provide an entry point for
asyncio calls in your widget.

For example, the Mpris2 widget uses the following code:

6.1. How to create a widget 159

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

from libqtile.utils import add_signal_receiver

...

async def _config_async(self):
subscribe = await add_signal_receiver(

self.message, # Callback function
session_bus=True,
signal_name="PropertiesChanged",
bus_name=self.objname,
path="/org/mpris/MediaPlayer2",
dbus_interface="org.freedesktop.DBus.Properties")

dbus-next can also be used to query properties, call methods etc. on dbus interfaces. Refer to the dbus-next docu-
mentation for more information on how to use the module.

6.1.7 Mouse events

By default, widgets handle button presses and will call any function that is bound to the button in the mouse_callbacks
dictionary. The dictionary keys are as follows:

• Button1: Left click

• Button2: Middle click

• Button3: Right click

• Button4: Scroll up

• Button5: Scroll down

• Button6: Scroll left

• Button7: Scroll right

You can then define your button bindings in your widget (e.g. in __init__):

class MyWidget(widget.TextBox)

def __init__(self, *args, **config):
widget.TextBox.__init__(self, *args, **kwargs)
self.add_callbacks(

{
"Button1": self.left_click_method,
"Button3": self.right_click_method

}
)

Note: As well as functions, you can also bind LazyCall objects to button presses. For example:

self.add_callbacks(
{

"Button1": lazy.spawn("xterm"),
}

)

160 Chapter 6. Tips & Tricks

https://python-dbus-next.readthedocs.io/en/latest/
https://python-dbus-next.readthedocs.io/en/latest/

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

In addition to button presses, you can also respond to mouse enter and leave events. For example, to make a clock show
a longer date when you put your mouse over it, you can do the following:

class MouseOverClock(widget.Clock):
defaults = [

(
"long_format",
"%A %d %B %Y | %H:%M",
"Format to show when mouse is over widget."

)
]

def __init__(self, **config):
widget.Clock.__init__(self, **config)
self.add_defaults(MouseOverClock.defaults)
self.short_format = self.format

def mouse_enter(self, *args, **kwargs):
self.format = self.long_format
self.bar.draw()

def mouse_leave(self, *args, **kwargs):
self.format = self.short_format
self.bar.draw()

6.1.8 Debugging

You can use the logger object to record messages in the Qtile log file to help debug your development.

from libqtile.log_utils import logger

...

logger.debug("Callback function triggered")

Note: The default log level for the Qtile log is INFO so you may either want to change this when debugging or use
logger.info instead.

Debugging messages should be removed from your code before submitting pull requests.

6.1. How to create a widget 161

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

6.1.9 Submitting the widget to the official repo

The following sections are only relevant for users who wish for their widgets to be submitted as a PR for inclusion in
the main Qtile repo.

Including the widget in libqtile.widget

You should include your widget in the widgets dict in libqtile.widget.__init__.py. The relevant format is
{"ClassName": "modulename"}.

This has a number of benefits:

• Lazy imports

• Graceful handling of import errors (useful where widget relies on third party modules)

• Inclusion in basic unit testing (see below)

Testing

Any new widgets should include an accompanying unit test.

Basic initialisation and configurations (using defaults) will automatically be tested by test/widgets/
test_widget_init_configure.py if the widget has been included in libqtile.widget.__init__.py (see
above).

However, where possible, it is strongly encouraged that widgets include additional unit tests that test specific function-
ality of the widget (e.g. reaction to hooks).

See Unit testing for more.

Documentation

It is really important that we maintain good documentation for Qtile. Any new widgets must therefore include sufficient
documentation in order for users to understand how to use/configure the widget.

The majority of the documentation is generated automatically from your module. The widget's docstring will be used
as the description of the widget. Any parameters defined in the widget's defaults attribute will also be displayed. It
is essential that there is a clear explanation of each new parameter defined by the widget.

Screenshots

While not essential, it is strongly recommended that the documentation includes one or more screenshots.

Screenshots can be generated automatically with a minimal amount of coding by using the fixtures created by Qtile's
test suite.

A screenshot file must satisfy the following criteria:

• Be named ss_[widgetname].py

• Any function that takes a screenshot must be prefixed with ss_

• Define a pytest fixture named widget

An example screenshot file is below:

162 Chapter 6. Tips & Tricks

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

import pytest

from libqtile.widget import wttr

RESPONSE = "London: +17°C"

@pytest.fixture
def widget(monkeypatch):

def result(self):
return RESPONSE

monkeypatch.setattr("libqtile.widget.wttr.Wttr.fetch", result)
yield wttr.Wttr

@pytest.mark.parametrize(
"screenshot_manager",
[

{"location": {"London": "Home"}}
],
indirect=True

)
def ss_wttr(screenshot_manager):

screenshot_manager.take_screenshot()

The widget fixture returns the widget class (not an instance of the widget). Any monkeypatching of the widget should
be included in this fixture.

The screenshot function (here, called ss_wttr) must take an argument called screenshot_manager. The function
can also be parameterized, in which case, each dict object will be used to configure the widget for the screenshot (and
the configuration will be displayed in the docs). If you want to include parameterizations but also want to show the
default configuration, you should include an empty dict ({}) as the first object in the list.

Taking a screenshot is then as simple as calling screenshot_manager.take_screenshot(). The method can be
called multiple times in the same function.

screenshot_manager.take_screenshot() only takes a picture of the widget. If you need to take a screenshot of
the bar then you need a few extra steps:

def ss_bar_screenshot(screenshot_manager):
Generate a filename for the screenshot
target = screenshot_manager.target()

Get the bar object
bar = screenshot_manager.c.bar["top"]

Take a screenshot. Will take screenshot of whole bar unless
a `width` parameter is set.
bar.take_screenshot(target, width=width)

6.1. How to create a widget 163

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

6.1.10 Getting help

If you still need help with developing your widget then please submit a question in the qtile-dev group or submit an
issue on the github page if you believe there's an error in the codebase.

6.2 Using git

git is the version control system that is used to manage all of the source code. It is very powerful, but might be
frightening at first. This page should give you a quick overview, but for a complete guide you will have to search
the web on your own. Another great resource to get started practically without having to try out the newly-learned
commands on a pre-existing repository is learn git branching. You should probably learn the basic git vocabulary and
then come back to find out how you can use all that practically. This guide will be oriented on how to create a pull
request and things might be in a different order compared to the introductory guides.

Warning: This guide is not complete and never will be. If something isn't clear, consult other sources until you
are confident you know what you are doing.

6.2.1 I want to try out a feature somebody is working on

If you see a pull request on GitHub that you want to try out, have a look at the line where it says:

user wants to merge n commits into qtile:master from user:branch

Right now you probably have one remote from which you can fetch changes, the origin. If you cloned qtile/qtile,
git remote show origin will spit out the upstream url. If you cloned your fork, origin points to it and you
probably want to git remote add upstream https://www.github.com/qtile/qtile. To try out somebody's
work, you can add their fork as a new remote:

git remote add <user> https://www.github.com/user/qtile

where you fill in the username from the line we asked you to search for before. Then you can load data from that remote
with git fetch and then ultimately check out the branch with git checkout <user>/<branch>.

Alternatively, it is also possible to fetch and checkout pull requests without needing to add other remotes. The upstream
remote is sufficient:

git fetch upstream pull/<id>/head:pr<id>
git checkout pr<id>

The numeric pull request id can be found in the url or next to the title (preceeded by a # symbol).

Note: Having the feature branch checked out doesn't mean that it is installed and will be loaded when you restart qtile.
You might still need to install it with pip.

164 Chapter 6. Tips & Tricks

https://groups.google.com/forum/#!forum/qtile-dev
https://learngitbranching.js.org
https://www.github.com/qtile/qtile/pulls

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

6.2.2 I committed changes and the tests failed

You can easily change your last commit: After you have done your work, git add everything you need and use git
commit --amend to change your last commit. This causes the git history of your local clone to be diverged from your
fork on GitHub, so you need to force-push your changes with:

git push -f <origin> <feature-branch>

where origin might be your user name or origin if you cloned your fork and feature-branch is to be replaced by the
name of the branch you are working on.

Assuming the feature branch is currently checked out, you can usually omit it and just specify the origin.

6.2.3 I was told to rebase my work

If upstream/master is changed and you happened to change the same files as the commits that were added upstream, you
should rebase your work onto the most recent upstream/master. Checkout your master, pull from upstream, checkout
your branch again and then rebase it:

git checkout master
git pull upstream/master
git checkout <feature-branch>
git rebase upstream/master

You will be asked to solve conflicts where your diff cannot be applied with confidence to the work that was pushed
upstream. If that is the case, open the files in your text editor and resolve the conflicts manually. You possibly need to
git rebase --continue after you have resolved conflicts for one commit if you are rebasing multiple commits.

Note that the above doesn't work if you didn't create a branch. In that case you will find guides elsewhere to fix this
problem, ideally by creating a branch and resetting your master branch to where it should be.

6.2.4 I was told to squash some commits

If you introduce changes in one commit and replace them in another, you are told to squash these changes into one
single commit without the intermediate step:

git rebase -i master

opens a text editor with your commits and a comment block reminding you what you can do with your commits. You
can reword them to change the commit message, reorder them or choose fixup to squash the changes of a commit into
the commit on the line above.

This also changes your git history and you will need to force-push your changes afterwards.

Note that interactive rebasing also allows you to split, reorder and edit commits.

6.2. Using git 165

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

6.2.5 I was told to edit a commit message

If you need to edit the commit message of the last commit you did, use:

git commit --amend

to open an editor giving you the possibility to reword the message. If you want to reword the message of an older
commit or multiple commits, use git rebase -i as above with the reword command in the editor.

• genindex

166 Chapter 6. Tips & Tricks

INDEX

A
addgroup() (libqtile.hook.subscribe method), 47
AGroupBox (class in libqtile.widget), 65

B
Backlight (class in libqtile.widget), 66
Bar (class in libqtile.bar), 23
Battery (class in libqtile.widget), 67
BatteryIcon (class in libqtile.widget), 67
Bluetooth (class in libqtile.widget), 68
Bsp (class in libqtile.layout), 50

C
Canto (class in libqtile.widget), 70
CapsNumLockIndicator (class in libqtile.widget), 70
changegroup() (libqtile.hook.subscribe method), 47
CheckUpdates (class in libqtile.widget), 71
Chord (class in libqtile.widget), 72
Click (class in libqtile.config), 19
client_focus() (libqtile.hook.subscribe method), 47
client_killed() (libqtile.hook.subscribe method), 47
client_managed() (libqtile.hook.subscribe method), 47
client_mouse_enter() (libqtile.hook.subscribe

method), 47
client_name_updated() (libqtile.hook.subscribe

method), 47
client_new() (libqtile.hook.subscribe method), 47
client_urgent_hint_changed()

(libqtile.hook.subscribe method), 48
Clipboard (class in libqtile.widget), 72
Clock (class in libqtile.widget), 73
cmd_add_rule() (libqtile.core.manager.Qtile method),

128
cmd_addgroup() (libqtile.core.manager.Qtile method),

128
cmd_bring_to_front() (libqtile.backend.base.Window

method), 135
cmd_center() (libqtile.backend.base.Window method),

135
cmd_change_vt() (libqtile.backend.wayland.core.Core

method), 32

cmd_commands() (libqtile.backend.base.Window
method), 135

cmd_commands() (libqtile.backend.wayland.core.Core
method), 32

cmd_commands() (libqtile.bar.Bar method), 133
cmd_commands() (libqtile.config.Screen method), 134
cmd_commands() (libqtile.core.manager.Qtile method),

128
cmd_critical() (libqtile.core.manager.Qtile method),

128
cmd_debug() (libqtile.core.manager.Qtile method), 128
cmd_delgroup() (libqtile.core.manager.Qtile method),

129
cmd_disable_floating()

(libqtile.backend.base.Window method),
135

cmd_disable_fullscreen()
(libqtile.backend.base.Window method),
135

cmd_display_kb() (libqtile.core.manager.Qtile
method), 129

cmd_doc() (libqtile.backend.base.Window method), 135
cmd_doc() (libqtile.backend.wayland.core.Core

method), 32
cmd_doc() (libqtile.bar.Bar method), 133
cmd_doc() (libqtile.config.Screen method), 134
cmd_doc() (libqtile.core.manager.Qtile method), 129
cmd_down_opacity() (libqtile.backend.base.Window

method), 136
cmd_enable_floating()

(libqtile.backend.base.Window method),
136

cmd_enable_fullscreen()
(libqtile.backend.base.Window method),
136

cmd_error() (libqtile.core.manager.Qtile method), 129
cmd_eval() (libqtile.backend.base.Window method),

136
cmd_eval() (libqtile.backend.wayland.core.Core

method), 32
cmd_eval() (libqtile.bar.Bar method), 133
cmd_eval() (libqtile.config.Screen method), 135

167

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

cmd_eval() (libqtile.core.manager.Qtile method), 129
cmd_fake_button_press() (libqtile.bar.Bar method),

133
cmd_findwindow() (libqtile.core.manager.Qtile

method), 129
cmd_focus() (libqtile.backend.base.Window method),

136
cmd_function() (libqtile.backend.base.Window

method), 136
cmd_function() (libqtile.backend.wayland.core.Core

method), 32
cmd_function() (libqtile.bar.Bar method), 133
cmd_function() (libqtile.config.Screen method), 135
cmd_function() (libqtile.core.manager.Qtile method),

129
cmd_get_position() (libqtile.backend.base.Window

method), 136
cmd_get_size() (libqtile.backend.base.Window

method), 136
cmd_get_state() (libqtile.core.manager.Qtile method),

129
cmd_get_test_data() (libqtile.core.manager.Qtile

method), 129
cmd_groups() (libqtile.core.manager.Qtile method), 129
cmd_hide_show_bar() (libqtile.core.manager.Qtile

method), 129
cmd_info() (libqtile.backend.base.Window method),

136
cmd_info() (libqtile.backend.wayland.core.Core

method), 32
cmd_info() (libqtile.bar.Bar method), 133
cmd_info() (libqtile.config.Screen method), 135
cmd_info() (libqtile.core.manager.Qtile method), 129
cmd_internal_windows() (libqtile.core.manager.Qtile

method), 129
cmd_items() (libqtile.backend.base.Window method),

136
cmd_items() (libqtile.backend.wayland.core.Core

method), 32
cmd_items() (libqtile.bar.Bar method), 133
cmd_items() (libqtile.config.Screen method), 135
cmd_items() (libqtile.core.manager.Qtile method), 129
cmd_kill() (libqtile.backend.base.Window method),

136
cmd_labelgroup() (libqtile.core.manager.Qtile

method), 130
cmd_list_widgets() (libqtile.core.manager.Qtile

method), 130
cmd_loglevel() (libqtile.core.manager.Qtile method),

130
cmd_loglevelname() (libqtile.core.manager.Qtile

method), 130
cmd_match() (libqtile.backend.base.Window method),

136

cmd_move_floating() (libqtile.backend.base.Window
method), 136

cmd_next_group() (libqtile.config.Screen method), 135
cmd_next_layout() (libqtile.core.manager.Qtile

method), 130
cmd_next_screen() (libqtile.core.manager.Qtile

method), 130
cmd_next_urgent() (libqtile.core.manager.Qtile

method), 130
cmd_opacity() (libqtile.backend.base.Window

method), 136
cmd_pause() (libqtile.core.manager.Qtile method), 130
cmd_place() (libqtile.backend.base.Window method),

136
cmd_prev_group() (libqtile.config.Screen method), 135
cmd_prev_layout() (libqtile.core.manager.Qtile

method), 130
cmd_prev_screen() (libqtile.core.manager.Qtile

method), 130
cmd_qtile_info() (libqtile.core.manager.Qtile

method), 130
cmd_qtilecmd() (libqtile.core.manager.Qtile method),

130
cmd_reconfigure_screens()

(libqtile.core.manager.Qtile method), 130
cmd_reload_config() (libqtile.core.manager.Qtile

method), 130
cmd_remove_rule() (libqtile.core.manager.Qtile

method), 131
cmd_resize() (libqtile.config.Screen method), 135
cmd_resize_floating()

(libqtile.backend.base.Window method),
136

cmd_restart() (libqtile.core.manager.Qtile method),
131

cmd_run_extension() (libqtile.core.manager.Qtile
method), 131

cmd_screens() (libqtile.core.manager.Qtile method),
131

cmd_set_keymap() (libqtile.backend.wayland.core.Core
method), 32

cmd_set_position() (libqtile.backend.base.Window
method), 136

cmd_set_position_floating()
(libqtile.backend.base.Window method),
136

cmd_set_size_floating()
(libqtile.backend.base.Window method),
136

cmd_set_wallpaper() (libqtile.config.Screen method),
135

cmd_shutdown() (libqtile.core.manager.Qtile method),
131

cmd_simulate_keypress()

168 Index

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

(libqtile.core.manager.Qtile method), 131
cmd_spawn() (libqtile.core.manager.Qtile method), 131
cmd_spawncmd() (libqtile.core.manager.Qtile method),

131
cmd_static() (libqtile.backend.base.Window method),

137
cmd_status() (libqtile.core.manager.Qtile method), 132
cmd_switch_groups() (libqtile.core.manager.Qtile

method), 132
cmd_switchgroup() (libqtile.core.manager.Qtile

method), 132
cmd_sync() (libqtile.core.manager.Qtile method), 132
cmd_to_layout_index() (libqtile.core.manager.Qtile

method), 132
cmd_to_screen() (libqtile.core.manager.Qtile method),

132
cmd_toggle_floating()

(libqtile.backend.base.Window method),
137

cmd_toggle_fullscreen()
(libqtile.backend.base.Window method),
137

cmd_toggle_group() (libqtile.config.Screen method),
135

cmd_toggle_maximize()
(libqtile.backend.base.Window method),
137

cmd_toggle_minimize()
(libqtile.backend.base.Window method),
137

cmd_togroup() (libqtile.backend.base.Window
method), 137

cmd_togroup() (libqtile.core.manager.Qtile method),
132

cmd_toscreen() (libqtile.backend.base.Window
method), 137

cmd_tracemalloc_dump() (libqtile.core.manager.Qtile
method), 132

cmd_tracemalloc_toggle()
(libqtile.core.manager.Qtile method), 132

cmd_ungrab_all_chords()
(libqtile.core.manager.Qtile method), 132

cmd_ungrab_chord() (libqtile.core.manager.Qtile
method), 132

cmd_up_opacity() (libqtile.backend.base.Window
method), 137

cmd_validate_config() (libqtile.core.manager.Qtile
method), 132

cmd_warning() (libqtile.core.manager.Qtile method),
132

cmd_windows() (libqtile.core.manager.Qtile method),
132

Cmus (class in libqtile.widget), 73
Columns (class in libqtile.layout), 51

CommandSet (class in libqtile.extension), 43
Core (class in libqtile.backend.wayland.core), 32
Countdown (class in libqtile.widget), 74
CPU (class in libqtile.widget), 69
CPUGraph (class in libqtile.widget), 69
CryptoTicker (class in libqtile.widget), 75
current_screen_change() (libqtile.hook.subscribe

method), 48
CurrentLayout (class in libqtile.widget), 76
CurrentLayoutIcon (class in libqtile.widget), 76
CurrentScreen (class in libqtile.widget), 77

D
delgroup() (libqtile.hook.subscribe method), 48
DF (class in libqtile.widget), 78
Dmenu (class in libqtile.extension), 44
DmenuRun (class in libqtile.extension), 44
Drag (class in libqtile.config), 19
DropDown (class in libqtile.config), 13

E
enter_chord() (libqtile.hook.subscribe method), 48
EzConfig (class in libqtile.config), 18

F
float_change() (libqtile.hook.subscribe method), 48
Floating (class in libqtile.layout), 52
focus_change() (libqtile.hook.subscribe method), 48

G
Gap (class in libqtile.bar), 24
GenPollText (class in libqtile.widget), 78
GenPollUrl (class in libqtile.widget), 79
GmailChecker (class in libqtile.widget), 79
Group (class in libqtile.config), 10
group_window_add() (libqtile.hook.subscribe method),

48
GroupBox (class in libqtile.widget), 80

H
HDDBusyGraph (class in libqtile.widget), 81
HDDGraph (class in libqtile.widget), 82

I
IdleRPG (class in libqtile.widget), 82
Image (class in libqtile.widget), 83
ImapWidget (class in libqtile.widget), 84
InputConfig (class in libqtile.backend.wayland), 31

J
J4DmenuDesktop (class in libqtile.extension), 45

Index 169

Qtile Documentation, Release 0.21.1.dev0+gb4577ac.d20220323

K
Key (class in libqtile.config), 17
KeyboardKbdd (class in libqtile.widget), 85
KeyboardLayout (class in libqtile.widget), 85
KeyChord (class in libqtile.config), 18
KhalCalendar (class in libqtile.widget), 86

L
LaunchBar (class in libqtile.widget), 87
layout_change() (libqtile.hook.subscribe method), 48
leave_chord() (libqtile.hook.subscribe method), 49

M
Maildir (class in libqtile.widget), 87
Match (class in libqtile.config), 11
Matrix (class in libqtile.layout), 52
Max (class in libqtile.layout), 53
Memory (class in libqtile.widget), 88
MemoryGraph (class in libqtile.widget), 89
Mirror (class in libqtile.widget), 90
Moc (class in libqtile.widget), 90
MonadTall (class in libqtile.layout), 53
MonadThreeCol (class in libqtile.layout), 55
MonadWide (class in libqtile.layout), 57
Mpd2 (class in libqtile.widget), 91
Mpris2 (class in libqtile.widget), 94

N
Net (class in libqtile.widget), 94
net_wm_icon_change() (libqtile.hook.subscribe

method), 49
NetGraph (class in libqtile.widget), 95
Notify (class in libqtile.widget), 96
NvidiaSensors (class in libqtile.widget), 96

O
OpenWeather (class in libqtile.widget), 97

P
Pomodoro (class in libqtile.widget), 100
Prompt (class in libqtile.widget), 100
PulseVolume (class in libqtile.widget), 101

Q
Qtile (class in libqtile.core.manager), 128
QuickExit (class in libqtile.widget), 102

R
RatioTile (class in libqtile.layout), 59
restart() (libqtile.hook.subscribe method), 49
Rule (class in libqtile.config), 12
RunCommand (class in libqtile.extension), 46

S
ScratchPad (class in libqtile.config), 13
Screen (class in libqtile.config), 23
screen_change() (libqtile.hook.subscribe method), 49
screens_reconfigured() (libqtile.hook.subscribe

method), 49
selection_change() (libqtile.hook.subscribe method),

49
selection_notify() (libqtile.hook.subscribe method),

49
Sep (class in libqtile.widget), 103
setgroup() (libqtile.hook.subscribe method), 49
She (class in libqtile.widget), 103
shutdown() (libqtile.hook.subscribe method), 49
simple_key_binder() (in module libqtile.dgroups), 11
Slice (class in libqtile.layout), 59
Spacer (class in libqtile.widget), 104
Spiral (class in libqtile.layout), 60
Stack (class in libqtile.layout), 61
startup() (libqtile.hook.subscribe method), 50
startup_complete() (libqtile.hook.subscribe method),

50
startup_once() (libqtile.hook.subscribe method), 50
StatusNotifier (class in libqtile.widget), 104
StockTicker (class in libqtile.widget), 105
SwapGraph (class in libqtile.widget), 106
Systray (class in libqtile.widget), 106

T
TaskList (class in libqtile.widget), 107
TextBox (class in libqtile.widget), 108
ThermalSensor (class in libqtile.widget), 108
ThermalZone (class in libqtile.widget), 109
Tile (class in libqtile.layout), 61
TreeTab (class in libqtile.layout), 62

V
VerticalTile (class in libqtile.layout), 64
Volume (class in libqtile.widget), 110

W
Wallpaper (class in libqtile.widget), 111
WidgetBox (class in libqtile.widget), 112
Window (class in libqtile.backend.base), 135
WindowCount (class in libqtile.widget), 113
WindowList (class in libqtile.extension), 46
WindowName (class in libqtile.widget), 114
WindowTabs (class in libqtile.widget), 114
Wlan (class in libqtile.widget), 115
Wttr (class in libqtile.widget), 116

Z
Zoomy (class in libqtile.layout), 65

170 Index

	Getting started
	Installing Qtile
	Distro Guides
	Installing on Arch Linux
	Installing on Fedora
	Installing on Funtoo
	Customize

	Installing on Debian or Ubuntu
	Debian 11 (bullseye)

	Installing on Slackware
	Using slpkg (third party package manager)
	Manual installation

	Installing on FreeBSD

	Installing From Source
	Python interpreters
	Core Dependencies
	cairocffi
	Qtile

	Wayland

	Configuration
	Configuration lookup order
	Default Configuration
	Key Bindings
	Mouse Bindings

	Configuration variables
	Lazy objects
	Example
	Lazy functions

	General functions
	Group functions
	Window functions
	Screen functions
	ScratchPad DropDown functions
	User-defined functions
	Examples

	Groups
	Example
	Reference
	Group
	Group Matching
	Match
	Rule
	ScratchPad and DropDown

	Example
	Reference
	ScratchPad
	DropDown

	Keys
	KeyChords
	Modes
	Chains

	Modifiers
	Special keys
	Reference
	Key
	KeyChord
	EzConfig

	Layouts
	Example

	Mouse
	Example
	Reference
	Click
	Drag

	Screens
	Example
	Multiple Screens
	X11
	Wayland

	Fake Screens
	Third-party bars
	Reference
	Screen
	Bar
	Gap

	Hooks
	Examples
	Automatic floating dialogs
	Autostart
	Accessing the qtile object
	Async hooks

	Testing your configuration
	Starting Qtile
	Running from systemd
	Automatic login to virtual console
	Autostart X session

	Running Inside Gnome

	Troubleshooting
	So something has gone wrong... what do you do?
	Capturing an xtrace

	Running Qtile as a Wayland Compositor
	Backend-Specific Configuration
	Running X11-Only Programs
	Input Device Configuration
	InputConfig

	Core Commands
	Core

	Shell commands
	qtile start
	qtile shell
	Navigating the Object Graph
	Displaying the shell path
	Live Documentation

	qtile cmd-obj
	How it works
	Selecting an object
	Information on functions
	Passing arguments to functions

	Examples:
	Output of qtile cmd-obj -h
	Output of qtile cmd-obj -o group 3
	Output of qtile cmd-obj -o cmd

	qtile run-cmd
	qtile top
	dqtile-cmd
	Examples:
	Output of dqtile-cmd -o cmd
	Output of dqtile-cmd -h

	iqshell
	Dependencies
	Installing and Running the Kernel
	iqshell vs qtile shell

	Reference
	Built-in Extensions
	CommandSet
	Dmenu
	DmenuRun
	J4DmenuDesktop
	RunCommand
	WindowList

	Built-in Hooks
	Built-in Layouts
	Bsp
	Columns
	Floating
	Matrix
	Max
	MonadTall
	MonadThreeCol
	MonadWide
	RatioTile
	Slice
	Spiral
	Stack
	Tile
	TreeTab
	VerticalTile
	Zoomy

	Built-in Widgets
	AGroupBox
	Backlight
	Battery
	BatteryIcon
	Bluetooth
	CPU
	CPUGraph
	Canto
	CapsNumLockIndicator
	CheckUpdates
	Chord
	Clipboard
	Clock
	Cmus
	Countdown
	CryptoTicker
	CurrentLayout
	CurrentLayoutIcon
	CurrentScreen
	DF
	GenPollText
	GenPollUrl
	GmailChecker
	GroupBox
	HDDBusyGraph
	HDDGraph
	IdleRPG
	Image
	ImapWidget
	KeyboardKbdd
	KeyboardLayout
	KhalCalendar
	LaunchBar
	Maildir
	Memory
	MemoryGraph
	Mirror
	Moc
	Mpd2
	Mpris2
	Net
	NetGraph
	Notify
	NvidiaSensors
	OpenWeather
	Pomodoro
	Prompt
	PulseVolume
	QuickExit
	Sep
	She
	Spacer
	StatusNotifier
	StockTicker
	SwapGraph
	Systray
	TaskList
	TextBox
	ThermalSensor
	ThermalZone
	Volume
	Wallpaper
	WidgetBox
	WindowCount
	WindowName
	WindowTabs
	Wlan
	Wttr

	Default Config File

	Advanced scripting
	Scripting
	Client-Server Scripting Model
	Example

	Commands API
	Introduction: Object Graph
	Keys
	Digging Deeper: Command Objects
	The Command Graph
	Executing graph commands: Command Interface
	Tying it together: Command Client

	Scripting Commands
	Qtile
	Bar
	Group
	Screen
	Window

	Keybindings in images
	Default configuration
	Generate your own images

	Getting involved
	Hacking on Qtile
	Requirements
	Backends

	Building cffi module
	Setting up the environment
	Building the documentation
	Development and testing
	Coding style
	Logging
	Deprecation policy
	Using Xephyr
	Second X Session
	Debugging in PyCharm
	Debugging in VSCode
	Resources
	Troubleshoot
	Cairo errors
	Fonts errors

	Contributing
	Reporting bugs
	Writing code
	Submit a pull request
	Unit testing
	Running tests locally

	Miscellaneous
	Frequently Asked Questions
	Why the name Qtile?
	When I first start xterm/urxvt/rxvt containing an instance of Vim, I see text and layout corruption. What gives?
	How do I know which modifier specification maps to which key?
	My "pointer mouse cursor" isn't the one I expect it to be!
	LibreOffice menus don't appear or don't stay visible
	How can I get my groups to stick to screens?
	Where can I find example configurations and other scripts?

	License

	Tips & Tricks
	How to create a widget
	What is a widget?
	Widget base classes
	_Widget
	_TextBox
	InLoopPollText
	ThreadPoolText

	Mixins
	PaddingMixin
	MarginMixin

	Configuration
	Defining Parameters
	The __init__ method
	The _configure method

	Displaying output
	The "draw" method
	Displaying text
	Displaying icons and images
	Drawing shapes
	Background

	Updating the widget
	Timers
	Hooks
	Using dbus

	Mouse events
	Debugging
	Submitting the widget to the official repo
	Including the widget in libqtile.widget
	Testing
	Documentation
	Screenshots

	Getting help

	Using git
	I want to try out a feature somebody is working on
	I committed changes and the tests failed
	I was told to rebase my work
	I was told to squash some commits
	I was told to edit a commit message

	Index

